I know what a Reset signal is, but a Set/Reset signal? Isn't that impossible?











up vote
3
down vote

favorite












A schematic by Lattice Semiconductor includes the diagrammed D flip-flop. This D flip/flop accepts, among others, a Set/Reset signal.



I would have understood a Set signal. I would have understood a Reset signal. I would even have understood Set and Reset signals on separate lines. I cannot, however, understand a joint Set/Reset signal.



  -------------------
| |
--| D Q |--
--| CLOCK ENABLE |
--|>CLOCK |
| |
| SET/RESET |
------------------
|


QUESTION



What is a Set/Reset signal, please?



ADDITIONAL INFORMATION



For optional reference, here is the data sheet (1.5 MB) in which the D flip-flop appears, in Figure 3.2, page 9. I do not, of course, ask you to go to read a 52-page data sheet for me! (That would be my homework, not yours.) Therefore, the relevant quotes from the data sheet as far as I know are as follows.




Each logic cell includes ... a D-style flip-flop (DFF), with an optional clock-enable and reset control input.... [Sect. 3.1.1, page 9.]



... Signal description [is as follows].




  • Function: input.

  • Type: control signal.

  • Signal name: Set/Reset. (Footnote: if Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration).

  • Description: Asynchronous or synchronous local set/reset shared by [a block of eight logic cells, each cell including a flip-flop]. [Table 3.1, page 10.]




One can externally disable the Set/Reset signal, presumably via multiplexing or high-Z pull-down, but I see nothing to decide whether the Set/Reset signal—when not disabled—should set the flip-flop or reset it.



Am I missing something?



If you know what a Set/Reset signal is, would you tell me?










share|improve this question




























    up vote
    3
    down vote

    favorite












    A schematic by Lattice Semiconductor includes the diagrammed D flip-flop. This D flip/flop accepts, among others, a Set/Reset signal.



    I would have understood a Set signal. I would have understood a Reset signal. I would even have understood Set and Reset signals on separate lines. I cannot, however, understand a joint Set/Reset signal.



      -------------------
    | |
    --| D Q |--
    --| CLOCK ENABLE |
    --|>CLOCK |
    | |
    | SET/RESET |
    ------------------
    |


    QUESTION



    What is a Set/Reset signal, please?



    ADDITIONAL INFORMATION



    For optional reference, here is the data sheet (1.5 MB) in which the D flip-flop appears, in Figure 3.2, page 9. I do not, of course, ask you to go to read a 52-page data sheet for me! (That would be my homework, not yours.) Therefore, the relevant quotes from the data sheet as far as I know are as follows.




    Each logic cell includes ... a D-style flip-flop (DFF), with an optional clock-enable and reset control input.... [Sect. 3.1.1, page 9.]



    ... Signal description [is as follows].




    • Function: input.

    • Type: control signal.

    • Signal name: Set/Reset. (Footnote: if Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration).

    • Description: Asynchronous or synchronous local set/reset shared by [a block of eight logic cells, each cell including a flip-flop]. [Table 3.1, page 10.]




    One can externally disable the Set/Reset signal, presumably via multiplexing or high-Z pull-down, but I see nothing to decide whether the Set/Reset signal—when not disabled—should set the flip-flop or reset it.



    Am I missing something?



    If you know what a Set/Reset signal is, would you tell me?










    share|improve this question


























      up vote
      3
      down vote

      favorite









      up vote
      3
      down vote

      favorite











      A schematic by Lattice Semiconductor includes the diagrammed D flip-flop. This D flip/flop accepts, among others, a Set/Reset signal.



      I would have understood a Set signal. I would have understood a Reset signal. I would even have understood Set and Reset signals on separate lines. I cannot, however, understand a joint Set/Reset signal.



        -------------------
      | |
      --| D Q |--
      --| CLOCK ENABLE |
      --|>CLOCK |
      | |
      | SET/RESET |
      ------------------
      |


      QUESTION



      What is a Set/Reset signal, please?



      ADDITIONAL INFORMATION



      For optional reference, here is the data sheet (1.5 MB) in which the D flip-flop appears, in Figure 3.2, page 9. I do not, of course, ask you to go to read a 52-page data sheet for me! (That would be my homework, not yours.) Therefore, the relevant quotes from the data sheet as far as I know are as follows.




      Each logic cell includes ... a D-style flip-flop (DFF), with an optional clock-enable and reset control input.... [Sect. 3.1.1, page 9.]



      ... Signal description [is as follows].




      • Function: input.

      • Type: control signal.

      • Signal name: Set/Reset. (Footnote: if Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration).

      • Description: Asynchronous or synchronous local set/reset shared by [a block of eight logic cells, each cell including a flip-flop]. [Table 3.1, page 10.]




      One can externally disable the Set/Reset signal, presumably via multiplexing or high-Z pull-down, but I see nothing to decide whether the Set/Reset signal—when not disabled—should set the flip-flop or reset it.



      Am I missing something?



      If you know what a Set/Reset signal is, would you tell me?










      share|improve this question















      A schematic by Lattice Semiconductor includes the diagrammed D flip-flop. This D flip/flop accepts, among others, a Set/Reset signal.



      I would have understood a Set signal. I would have understood a Reset signal. I would even have understood Set and Reset signals on separate lines. I cannot, however, understand a joint Set/Reset signal.



        -------------------
      | |
      --| D Q |--
      --| CLOCK ENABLE |
      --|>CLOCK |
      | |
      | SET/RESET |
      ------------------
      |


      QUESTION



      What is a Set/Reset signal, please?



      ADDITIONAL INFORMATION



      For optional reference, here is the data sheet (1.5 MB) in which the D flip-flop appears, in Figure 3.2, page 9. I do not, of course, ask you to go to read a 52-page data sheet for me! (That would be my homework, not yours.) Therefore, the relevant quotes from the data sheet as far as I know are as follows.




      Each logic cell includes ... a D-style flip-flop (DFF), with an optional clock-enable and reset control input.... [Sect. 3.1.1, page 9.]



      ... Signal description [is as follows].




      • Function: input.

      • Type: control signal.

      • Signal name: Set/Reset. (Footnote: if Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration).

      • Description: Asynchronous or synchronous local set/reset shared by [a block of eight logic cells, each cell including a flip-flop]. [Table 3.1, page 10.]




      One can externally disable the Set/Reset signal, presumably via multiplexing or high-Z pull-down, but I see nothing to decide whether the Set/Reset signal—when not disabled—should set the flip-flop or reset it.



      Am I missing something?



      If you know what a Set/Reset signal is, would you tell me?







      fpga flipflop reset lattice






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 11 hours ago

























      asked 11 hours ago









      thb

      312312




      312312






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          10
          down vote













          In all likelihood it isn't really a "set/reset" signal, so much as a signal that can be configured to be either set or reset depending on how the device is configured. Note that in figure 3.2 (copied below for clarity), it says "flip-flop with optional [...] set or reset controls".



          Similarly it will also be the configuration bits that disable the signal entirely if unused. You can see this in figure 3.2:



          Fig 3.2






          share|improve this answer





















          • Hm. Yes, your interpretation makes sense, but if you are right, then the schematic might have been more clearly drawn. They might have just added an XOR gate. Then it would have been clear. Therefore, your interpretation is helpful. I appreciate it.
            – thb
            10 hours ago






          • 4




            Since we have complete bitstream documentation for this FPGA, we can see further evidence that this interpretation is correct: “LC_i[18] is the Set_NoReset bit. When this bit is set then the set/reset signal will set, not reset the flip-flop.”
            – wrtlprnft
            9 hours ago










          • @wrtlprnft: if your comment were an answer, then I should be glad to upvote it. (Incidentally, Icestorm is precisely what I am trying to get up and running, so your hyperlink is most appropriate.)
            – thb
            8 hours ago




















          up vote
          0
          down vote













          D types combine the set and reset pins with an inverter so that the set and reset pins are in opposite states, that prevents the forbidden state of neither set.



          Source: Electronic Tutorials - The D-type Flip Flop




          "The D-type flip-flop is a modified Set-Reset flip-flop with the addition of an inverter to prevent the S and R inputs from being at the same logic level.



          One of the main disadvantages of the basic SR NAND Gate Bistable circuit is that the indeterminate input condition of SET = “0” and RESET = “0” is forbidden.



          This state will force both outputs to be at logic “1”, over-riding the feedback latching action and whichever input goes to logic level “1” first will lose control, while the other input still at logic “0” controls the resulting state of the latch.



          But in order to prevent this from happening an inverter can be connected between the “SET” and the “RESET” inputs to produce another type of flip flop circuit known as a Data Latch, Delay flip flop, D-type Bistable, D-type Flip Flop or just simply a D Flip Flop as it is more generally called.".




          Source: Hyperphysics - Clocked D Flip-Flop




          "The D flip-flop tries to follow the input D but cannot make the required transitions unless it is enabled by the clock. Note that if the clock is low when a transition in D occurs, the tracking transiton in Q occurs at the next upward transition of the clock.".



          Output Example




          If the DFF block were instead a D FF made from NAND latches it would look like this:



          Internal Diagram






          share|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("schematics", function () {
            StackExchange.schematics.init();
            });
            }, "cicuitlab");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "135"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f408300%2fi-know-what-a-reset-signal-is-but-a-set-reset-signal-isnt-that-impossible%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            10
            down vote













            In all likelihood it isn't really a "set/reset" signal, so much as a signal that can be configured to be either set or reset depending on how the device is configured. Note that in figure 3.2 (copied below for clarity), it says "flip-flop with optional [...] set or reset controls".



            Similarly it will also be the configuration bits that disable the signal entirely if unused. You can see this in figure 3.2:



            Fig 3.2






            share|improve this answer





















            • Hm. Yes, your interpretation makes sense, but if you are right, then the schematic might have been more clearly drawn. They might have just added an XOR gate. Then it would have been clear. Therefore, your interpretation is helpful. I appreciate it.
              – thb
              10 hours ago






            • 4




              Since we have complete bitstream documentation for this FPGA, we can see further evidence that this interpretation is correct: “LC_i[18] is the Set_NoReset bit. When this bit is set then the set/reset signal will set, not reset the flip-flop.”
              – wrtlprnft
              9 hours ago










            • @wrtlprnft: if your comment were an answer, then I should be glad to upvote it. (Incidentally, Icestorm is precisely what I am trying to get up and running, so your hyperlink is most appropriate.)
              – thb
              8 hours ago

















            up vote
            10
            down vote













            In all likelihood it isn't really a "set/reset" signal, so much as a signal that can be configured to be either set or reset depending on how the device is configured. Note that in figure 3.2 (copied below for clarity), it says "flip-flop with optional [...] set or reset controls".



            Similarly it will also be the configuration bits that disable the signal entirely if unused. You can see this in figure 3.2:



            Fig 3.2






            share|improve this answer





















            • Hm. Yes, your interpretation makes sense, but if you are right, then the schematic might have been more clearly drawn. They might have just added an XOR gate. Then it would have been clear. Therefore, your interpretation is helpful. I appreciate it.
              – thb
              10 hours ago






            • 4




              Since we have complete bitstream documentation for this FPGA, we can see further evidence that this interpretation is correct: “LC_i[18] is the Set_NoReset bit. When this bit is set then the set/reset signal will set, not reset the flip-flop.”
              – wrtlprnft
              9 hours ago










            • @wrtlprnft: if your comment were an answer, then I should be glad to upvote it. (Incidentally, Icestorm is precisely what I am trying to get up and running, so your hyperlink is most appropriate.)
              – thb
              8 hours ago















            up vote
            10
            down vote










            up vote
            10
            down vote









            In all likelihood it isn't really a "set/reset" signal, so much as a signal that can be configured to be either set or reset depending on how the device is configured. Note that in figure 3.2 (copied below for clarity), it says "flip-flop with optional [...] set or reset controls".



            Similarly it will also be the configuration bits that disable the signal entirely if unused. You can see this in figure 3.2:



            Fig 3.2






            share|improve this answer












            In all likelihood it isn't really a "set/reset" signal, so much as a signal that can be configured to be either set or reset depending on how the device is configured. Note that in figure 3.2 (copied below for clarity), it says "flip-flop with optional [...] set or reset controls".



            Similarly it will also be the configuration bits that disable the signal entirely if unused. You can see this in figure 3.2:



            Fig 3.2







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 11 hours ago









            Tom Carpenter

            37.9k268116




            37.9k268116












            • Hm. Yes, your interpretation makes sense, but if you are right, then the schematic might have been more clearly drawn. They might have just added an XOR gate. Then it would have been clear. Therefore, your interpretation is helpful. I appreciate it.
              – thb
              10 hours ago






            • 4




              Since we have complete bitstream documentation for this FPGA, we can see further evidence that this interpretation is correct: “LC_i[18] is the Set_NoReset bit. When this bit is set then the set/reset signal will set, not reset the flip-flop.”
              – wrtlprnft
              9 hours ago










            • @wrtlprnft: if your comment were an answer, then I should be glad to upvote it. (Incidentally, Icestorm is precisely what I am trying to get up and running, so your hyperlink is most appropriate.)
              – thb
              8 hours ago




















            • Hm. Yes, your interpretation makes sense, but if you are right, then the schematic might have been more clearly drawn. They might have just added an XOR gate. Then it would have been clear. Therefore, your interpretation is helpful. I appreciate it.
              – thb
              10 hours ago






            • 4




              Since we have complete bitstream documentation for this FPGA, we can see further evidence that this interpretation is correct: “LC_i[18] is the Set_NoReset bit. When this bit is set then the set/reset signal will set, not reset the flip-flop.”
              – wrtlprnft
              9 hours ago










            • @wrtlprnft: if your comment were an answer, then I should be glad to upvote it. (Incidentally, Icestorm is precisely what I am trying to get up and running, so your hyperlink is most appropriate.)
              – thb
              8 hours ago


















            Hm. Yes, your interpretation makes sense, but if you are right, then the schematic might have been more clearly drawn. They might have just added an XOR gate. Then it would have been clear. Therefore, your interpretation is helpful. I appreciate it.
            – thb
            10 hours ago




            Hm. Yes, your interpretation makes sense, but if you are right, then the schematic might have been more clearly drawn. They might have just added an XOR gate. Then it would have been clear. Therefore, your interpretation is helpful. I appreciate it.
            – thb
            10 hours ago




            4




            4




            Since we have complete bitstream documentation for this FPGA, we can see further evidence that this interpretation is correct: “LC_i[18] is the Set_NoReset bit. When this bit is set then the set/reset signal will set, not reset the flip-flop.”
            – wrtlprnft
            9 hours ago




            Since we have complete bitstream documentation for this FPGA, we can see further evidence that this interpretation is correct: “LC_i[18] is the Set_NoReset bit. When this bit is set then the set/reset signal will set, not reset the flip-flop.”
            – wrtlprnft
            9 hours ago












            @wrtlprnft: if your comment were an answer, then I should be glad to upvote it. (Incidentally, Icestorm is precisely what I am trying to get up and running, so your hyperlink is most appropriate.)
            – thb
            8 hours ago






            @wrtlprnft: if your comment were an answer, then I should be glad to upvote it. (Incidentally, Icestorm is precisely what I am trying to get up and running, so your hyperlink is most appropriate.)
            – thb
            8 hours ago














            up vote
            0
            down vote













            D types combine the set and reset pins with an inverter so that the set and reset pins are in opposite states, that prevents the forbidden state of neither set.



            Source: Electronic Tutorials - The D-type Flip Flop




            "The D-type flip-flop is a modified Set-Reset flip-flop with the addition of an inverter to prevent the S and R inputs from being at the same logic level.



            One of the main disadvantages of the basic SR NAND Gate Bistable circuit is that the indeterminate input condition of SET = “0” and RESET = “0” is forbidden.



            This state will force both outputs to be at logic “1”, over-riding the feedback latching action and whichever input goes to logic level “1” first will lose control, while the other input still at logic “0” controls the resulting state of the latch.



            But in order to prevent this from happening an inverter can be connected between the “SET” and the “RESET” inputs to produce another type of flip flop circuit known as a Data Latch, Delay flip flop, D-type Bistable, D-type Flip Flop or just simply a D Flip Flop as it is more generally called.".




            Source: Hyperphysics - Clocked D Flip-Flop




            "The D flip-flop tries to follow the input D but cannot make the required transitions unless it is enabled by the clock. Note that if the clock is low when a transition in D occurs, the tracking transiton in Q occurs at the next upward transition of the clock.".



            Output Example




            If the DFF block were instead a D FF made from NAND latches it would look like this:



            Internal Diagram






            share|improve this answer

























              up vote
              0
              down vote













              D types combine the set and reset pins with an inverter so that the set and reset pins are in opposite states, that prevents the forbidden state of neither set.



              Source: Electronic Tutorials - The D-type Flip Flop




              "The D-type flip-flop is a modified Set-Reset flip-flop with the addition of an inverter to prevent the S and R inputs from being at the same logic level.



              One of the main disadvantages of the basic SR NAND Gate Bistable circuit is that the indeterminate input condition of SET = “0” and RESET = “0” is forbidden.



              This state will force both outputs to be at logic “1”, over-riding the feedback latching action and whichever input goes to logic level “1” first will lose control, while the other input still at logic “0” controls the resulting state of the latch.



              But in order to prevent this from happening an inverter can be connected between the “SET” and the “RESET” inputs to produce another type of flip flop circuit known as a Data Latch, Delay flip flop, D-type Bistable, D-type Flip Flop or just simply a D Flip Flop as it is more generally called.".




              Source: Hyperphysics - Clocked D Flip-Flop




              "The D flip-flop tries to follow the input D but cannot make the required transitions unless it is enabled by the clock. Note that if the clock is low when a transition in D occurs, the tracking transiton in Q occurs at the next upward transition of the clock.".



              Output Example




              If the DFF block were instead a D FF made from NAND latches it would look like this:



              Internal Diagram






              share|improve this answer























                up vote
                0
                down vote










                up vote
                0
                down vote









                D types combine the set and reset pins with an inverter so that the set and reset pins are in opposite states, that prevents the forbidden state of neither set.



                Source: Electronic Tutorials - The D-type Flip Flop




                "The D-type flip-flop is a modified Set-Reset flip-flop with the addition of an inverter to prevent the S and R inputs from being at the same logic level.



                One of the main disadvantages of the basic SR NAND Gate Bistable circuit is that the indeterminate input condition of SET = “0” and RESET = “0” is forbidden.



                This state will force both outputs to be at logic “1”, over-riding the feedback latching action and whichever input goes to logic level “1” first will lose control, while the other input still at logic “0” controls the resulting state of the latch.



                But in order to prevent this from happening an inverter can be connected between the “SET” and the “RESET” inputs to produce another type of flip flop circuit known as a Data Latch, Delay flip flop, D-type Bistable, D-type Flip Flop or just simply a D Flip Flop as it is more generally called.".




                Source: Hyperphysics - Clocked D Flip-Flop




                "The D flip-flop tries to follow the input D but cannot make the required transitions unless it is enabled by the clock. Note that if the clock is low when a transition in D occurs, the tracking transiton in Q occurs at the next upward transition of the clock.".



                Output Example




                If the DFF block were instead a D FF made from NAND latches it would look like this:



                Internal Diagram






                share|improve this answer












                D types combine the set and reset pins with an inverter so that the set and reset pins are in opposite states, that prevents the forbidden state of neither set.



                Source: Electronic Tutorials - The D-type Flip Flop




                "The D-type flip-flop is a modified Set-Reset flip-flop with the addition of an inverter to prevent the S and R inputs from being at the same logic level.



                One of the main disadvantages of the basic SR NAND Gate Bistable circuit is that the indeterminate input condition of SET = “0” and RESET = “0” is forbidden.



                This state will force both outputs to be at logic “1”, over-riding the feedback latching action and whichever input goes to logic level “1” first will lose control, while the other input still at logic “0” controls the resulting state of the latch.



                But in order to prevent this from happening an inverter can be connected between the “SET” and the “RESET” inputs to produce another type of flip flop circuit known as a Data Latch, Delay flip flop, D-type Bistable, D-type Flip Flop or just simply a D Flip Flop as it is more generally called.".




                Source: Hyperphysics - Clocked D Flip-Flop




                "The D flip-flop tries to follow the input D but cannot make the required transitions unless it is enabled by the clock. Note that if the clock is low when a transition in D occurs, the tracking transiton in Q occurs at the next upward transition of the clock.".



                Output Example




                If the DFF block were instead a D FF made from NAND latches it would look like this:



                Internal Diagram







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 50 mins ago









                Rob

                22927




                22927






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f408300%2fi-know-what-a-reset-signal-is-but-a-set-reset-signal-isnt-that-impossible%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Create new schema in PostgreSQL using DBeaver

                    Deepest pit of an array with Javascript: test on Codility

                    Costa Masnaga