Proving such a function is always constant











up vote
4
down vote

favorite












Let $I subset R$ be an interval. Let $f : I to R$ be a continuous function.



Assume that $I := [a, b]$. Assume that for all $c, d in [a, b]$ such that $c < d$, there exists $e in [c,d]$ such that $f(e) = f(a)$ or $f(e) = f(b)$. Prove that $f$ is a constant.



Consider this statement: For all $c in [a,b], f(c) in {f(a),f(b)}$



I figured that proving this statement would allow me to prove the function to be constant, but I'm unable to do so. Any thoughts?










share|cite|improve this question
























  • Are (or were) you unable to prove the result from your statement, your statement from the given information or both?
    – PJTraill
    7 hours ago










  • The latter actually. @PJTraill
    – Ahmad Lamaa
    3 hours ago

















up vote
4
down vote

favorite












Let $I subset R$ be an interval. Let $f : I to R$ be a continuous function.



Assume that $I := [a, b]$. Assume that for all $c, d in [a, b]$ such that $c < d$, there exists $e in [c,d]$ such that $f(e) = f(a)$ or $f(e) = f(b)$. Prove that $f$ is a constant.



Consider this statement: For all $c in [a,b], f(c) in {f(a),f(b)}$



I figured that proving this statement would allow me to prove the function to be constant, but I'm unable to do so. Any thoughts?










share|cite|improve this question
























  • Are (or were) you unable to prove the result from your statement, your statement from the given information or both?
    – PJTraill
    7 hours ago










  • The latter actually. @PJTraill
    – Ahmad Lamaa
    3 hours ago















up vote
4
down vote

favorite









up vote
4
down vote

favorite











Let $I subset R$ be an interval. Let $f : I to R$ be a continuous function.



Assume that $I := [a, b]$. Assume that for all $c, d in [a, b]$ such that $c < d$, there exists $e in [c,d]$ such that $f(e) = f(a)$ or $f(e) = f(b)$. Prove that $f$ is a constant.



Consider this statement: For all $c in [a,b], f(c) in {f(a),f(b)}$



I figured that proving this statement would allow me to prove the function to be constant, but I'm unable to do so. Any thoughts?










share|cite|improve this question















Let $I subset R$ be an interval. Let $f : I to R$ be a continuous function.



Assume that $I := [a, b]$. Assume that for all $c, d in [a, b]$ such that $c < d$, there exists $e in [c,d]$ such that $f(e) = f(a)$ or $f(e) = f(b)$. Prove that $f$ is a constant.



Consider this statement: For all $c in [a,b], f(c) in {f(a),f(b)}$



I figured that proving this statement would allow me to prove the function to be constant, but I'm unable to do so. Any thoughts?







real-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 hours ago









amWhy

191k27223437




191k27223437










asked 13 hours ago









Ahmad Lamaa

1265




1265












  • Are (or were) you unable to prove the result from your statement, your statement from the given information or both?
    – PJTraill
    7 hours ago










  • The latter actually. @PJTraill
    – Ahmad Lamaa
    3 hours ago




















  • Are (or were) you unable to prove the result from your statement, your statement from the given information or both?
    – PJTraill
    7 hours ago










  • The latter actually. @PJTraill
    – Ahmad Lamaa
    3 hours ago


















Are (or were) you unable to prove the result from your statement, your statement from the given information or both?
– PJTraill
7 hours ago




Are (or were) you unable to prove the result from your statement, your statement from the given information or both?
– PJTraill
7 hours ago












The latter actually. @PJTraill
– Ahmad Lamaa
3 hours ago






The latter actually. @PJTraill
– Ahmad Lamaa
3 hours ago












4 Answers
4






active

oldest

votes

















up vote
5
down vote













We will proceed by contradiction:



I assume you want to prove that the function is constant given the statement




$c in [a, b] Rightarrow f(c) in {f(a), f(b) }$




if that's the case, then we get a continuous function to a discrete space.
If the function takes more than one value, the image of our function will be$ {f(a), f(b)}$ which is disconnected. But continous functions preserve connectedness.



Contradiction Q.E.D.






share|cite|improve this answer





















  • I suppose here $f(c)in[f(a), f(b)]$. Otherwise the function is discontinuous assuming $f(a)neq f(b)$.
    – Yadati Kiran
    13 hours ago








  • 1




    Yes, assuming $f(a) neq (fb) $ would mean it is discontinous, which is precisely the contradiction we're using that in fact $f(a)$ must be equal to $f(b)$ and the function is in fact constant. [think about the fact that if in the end both of them were to not be the same, the function would not be constant anyway ]
    – Aleks J
    13 hours ago




















up vote
4
down vote













Let $c$ in $(a,b)$ and let $epsilon$ be a positive real number such that $[c-epsilon,c+epsilon]subseteq[a,b]$. Define a sequence of intervals $(I_n)_{ninmathbb{N}}$ by the formula $I_n=[c-frac{epsilon}{n},c+frac{epsilon}{n}]$. By hypothesis, there exists a sequence of points $(c_n)_{ninmathbb{N}}$ such that $c_nin I_n$ and $f(c_n)in{f(a),f(b)}$. Then $c_n$ tends to $c$ and, by continuity of $f$, we have that $f(c)in{f(a),f(b)}$. Thus, by continuity, $f$ is constant because it takes values in a discrete space.






share|cite|improve this answer










New contributor




Dante Grevino is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.


















  • Typo? It looks as though you meant to say because it takes values (rather than because take values).
    – PJTraill
    6 hours ago










  • @PJTraill Yes, I corrected it.
    – Dante Grevino
    5 hours ago


















up vote
1
down vote













The set $D:=f^{-1}(f(a))cup f^{-1}(f(b))$ is closed by continuity of $f$ and dense in $I$ by the special property. Clearly $D$ does not intersect the open set $Isetminus D$. By defnition of dense, this means that $Isetminus D$ is empty. Hence $I=D$. This makes $I$ the union of the two non-empty closed sets $f^{-1}(f(a))$, $f^{-1}(f(b))$. As $I$ is connected, these sets must overlap, which means that $f(a)=f(b)$ and ultimately that $f^{-1}(f(a))=I$, i.e., $f$ is constant.






share|cite|improve this answer




























    up vote
    0
    down vote













    You need to use intermediate value property of continuous functions.



    Suppose $f(a) =f(b) $. If $f$ is not constant in $[a, b] $ then there is some value of $f$ which differs from $f(a) =f(b) $ and let's suppose this value $f(c) > f(a) $ (the case $f(c) <f(a) $ is handled in a similar manner). By continuity there is an interval of type $[c-delta, c+delta] $ where all values of $f$ are greater than $f(a) $. And this contradicts the given hypotheses. Thus $f$ must be a constant function.



    The case when $f(a) neq f(b) $ leads us to a contradiction as shown next. Let's us assume $f(a) <f(b) $ and choose $k$ such that $f(a) <k<f(b) $. By intermediate value property there is a $cin(a, b) $ for which $f(c) =k$. And by continuity there is an interval of type $[c-delta, c+delta] $ where all values of $f$ lie strictly between $f(a)$ and $f(b) $. This contradiction shows that we must have $f(a) =f(b) $ and as shown earlier the function is constant.






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














       

      draft saved


      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009279%2fproving-such-a-function-is-always-constant%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      5
      down vote













      We will proceed by contradiction:



      I assume you want to prove that the function is constant given the statement




      $c in [a, b] Rightarrow f(c) in {f(a), f(b) }$




      if that's the case, then we get a continuous function to a discrete space.
      If the function takes more than one value, the image of our function will be$ {f(a), f(b)}$ which is disconnected. But continous functions preserve connectedness.



      Contradiction Q.E.D.






      share|cite|improve this answer





















      • I suppose here $f(c)in[f(a), f(b)]$. Otherwise the function is discontinuous assuming $f(a)neq f(b)$.
        – Yadati Kiran
        13 hours ago








      • 1




        Yes, assuming $f(a) neq (fb) $ would mean it is discontinous, which is precisely the contradiction we're using that in fact $f(a)$ must be equal to $f(b)$ and the function is in fact constant. [think about the fact that if in the end both of them were to not be the same, the function would not be constant anyway ]
        – Aleks J
        13 hours ago

















      up vote
      5
      down vote













      We will proceed by contradiction:



      I assume you want to prove that the function is constant given the statement




      $c in [a, b] Rightarrow f(c) in {f(a), f(b) }$




      if that's the case, then we get a continuous function to a discrete space.
      If the function takes more than one value, the image of our function will be$ {f(a), f(b)}$ which is disconnected. But continous functions preserve connectedness.



      Contradiction Q.E.D.






      share|cite|improve this answer





















      • I suppose here $f(c)in[f(a), f(b)]$. Otherwise the function is discontinuous assuming $f(a)neq f(b)$.
        – Yadati Kiran
        13 hours ago








      • 1




        Yes, assuming $f(a) neq (fb) $ would mean it is discontinous, which is precisely the contradiction we're using that in fact $f(a)$ must be equal to $f(b)$ and the function is in fact constant. [think about the fact that if in the end both of them were to not be the same, the function would not be constant anyway ]
        – Aleks J
        13 hours ago















      up vote
      5
      down vote










      up vote
      5
      down vote









      We will proceed by contradiction:



      I assume you want to prove that the function is constant given the statement




      $c in [a, b] Rightarrow f(c) in {f(a), f(b) }$




      if that's the case, then we get a continuous function to a discrete space.
      If the function takes more than one value, the image of our function will be$ {f(a), f(b)}$ which is disconnected. But continous functions preserve connectedness.



      Contradiction Q.E.D.






      share|cite|improve this answer












      We will proceed by contradiction:



      I assume you want to prove that the function is constant given the statement




      $c in [a, b] Rightarrow f(c) in {f(a), f(b) }$




      if that's the case, then we get a continuous function to a discrete space.
      If the function takes more than one value, the image of our function will be$ {f(a), f(b)}$ which is disconnected. But continous functions preserve connectedness.



      Contradiction Q.E.D.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 13 hours ago









      Aleks J

      1796




      1796












      • I suppose here $f(c)in[f(a), f(b)]$. Otherwise the function is discontinuous assuming $f(a)neq f(b)$.
        – Yadati Kiran
        13 hours ago








      • 1




        Yes, assuming $f(a) neq (fb) $ would mean it is discontinous, which is precisely the contradiction we're using that in fact $f(a)$ must be equal to $f(b)$ and the function is in fact constant. [think about the fact that if in the end both of them were to not be the same, the function would not be constant anyway ]
        – Aleks J
        13 hours ago




















      • I suppose here $f(c)in[f(a), f(b)]$. Otherwise the function is discontinuous assuming $f(a)neq f(b)$.
        – Yadati Kiran
        13 hours ago








      • 1




        Yes, assuming $f(a) neq (fb) $ would mean it is discontinous, which is precisely the contradiction we're using that in fact $f(a)$ must be equal to $f(b)$ and the function is in fact constant. [think about the fact that if in the end both of them were to not be the same, the function would not be constant anyway ]
        – Aleks J
        13 hours ago


















      I suppose here $f(c)in[f(a), f(b)]$. Otherwise the function is discontinuous assuming $f(a)neq f(b)$.
      – Yadati Kiran
      13 hours ago






      I suppose here $f(c)in[f(a), f(b)]$. Otherwise the function is discontinuous assuming $f(a)neq f(b)$.
      – Yadati Kiran
      13 hours ago






      1




      1




      Yes, assuming $f(a) neq (fb) $ would mean it is discontinous, which is precisely the contradiction we're using that in fact $f(a)$ must be equal to $f(b)$ and the function is in fact constant. [think about the fact that if in the end both of them were to not be the same, the function would not be constant anyway ]
      – Aleks J
      13 hours ago






      Yes, assuming $f(a) neq (fb) $ would mean it is discontinous, which is precisely the contradiction we're using that in fact $f(a)$ must be equal to $f(b)$ and the function is in fact constant. [think about the fact that if in the end both of them were to not be the same, the function would not be constant anyway ]
      – Aleks J
      13 hours ago












      up vote
      4
      down vote













      Let $c$ in $(a,b)$ and let $epsilon$ be a positive real number such that $[c-epsilon,c+epsilon]subseteq[a,b]$. Define a sequence of intervals $(I_n)_{ninmathbb{N}}$ by the formula $I_n=[c-frac{epsilon}{n},c+frac{epsilon}{n}]$. By hypothesis, there exists a sequence of points $(c_n)_{ninmathbb{N}}$ such that $c_nin I_n$ and $f(c_n)in{f(a),f(b)}$. Then $c_n$ tends to $c$ and, by continuity of $f$, we have that $f(c)in{f(a),f(b)}$. Thus, by continuity, $f$ is constant because it takes values in a discrete space.






      share|cite|improve this answer










      New contributor




      Dante Grevino is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.


















      • Typo? It looks as though you meant to say because it takes values (rather than because take values).
        – PJTraill
        6 hours ago










      • @PJTraill Yes, I corrected it.
        – Dante Grevino
        5 hours ago















      up vote
      4
      down vote













      Let $c$ in $(a,b)$ and let $epsilon$ be a positive real number such that $[c-epsilon,c+epsilon]subseteq[a,b]$. Define a sequence of intervals $(I_n)_{ninmathbb{N}}$ by the formula $I_n=[c-frac{epsilon}{n},c+frac{epsilon}{n}]$. By hypothesis, there exists a sequence of points $(c_n)_{ninmathbb{N}}$ such that $c_nin I_n$ and $f(c_n)in{f(a),f(b)}$. Then $c_n$ tends to $c$ and, by continuity of $f$, we have that $f(c)in{f(a),f(b)}$. Thus, by continuity, $f$ is constant because it takes values in a discrete space.






      share|cite|improve this answer










      New contributor




      Dante Grevino is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.


















      • Typo? It looks as though you meant to say because it takes values (rather than because take values).
        – PJTraill
        6 hours ago










      • @PJTraill Yes, I corrected it.
        – Dante Grevino
        5 hours ago













      up vote
      4
      down vote










      up vote
      4
      down vote









      Let $c$ in $(a,b)$ and let $epsilon$ be a positive real number such that $[c-epsilon,c+epsilon]subseteq[a,b]$. Define a sequence of intervals $(I_n)_{ninmathbb{N}}$ by the formula $I_n=[c-frac{epsilon}{n},c+frac{epsilon}{n}]$. By hypothesis, there exists a sequence of points $(c_n)_{ninmathbb{N}}$ such that $c_nin I_n$ and $f(c_n)in{f(a),f(b)}$. Then $c_n$ tends to $c$ and, by continuity of $f$, we have that $f(c)in{f(a),f(b)}$. Thus, by continuity, $f$ is constant because it takes values in a discrete space.






      share|cite|improve this answer










      New contributor




      Dante Grevino is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      Let $c$ in $(a,b)$ and let $epsilon$ be a positive real number such that $[c-epsilon,c+epsilon]subseteq[a,b]$. Define a sequence of intervals $(I_n)_{ninmathbb{N}}$ by the formula $I_n=[c-frac{epsilon}{n},c+frac{epsilon}{n}]$. By hypothesis, there exists a sequence of points $(c_n)_{ninmathbb{N}}$ such that $c_nin I_n$ and $f(c_n)in{f(a),f(b)}$. Then $c_n$ tends to $c$ and, by continuity of $f$, we have that $f(c)in{f(a),f(b)}$. Thus, by continuity, $f$ is constant because it takes values in a discrete space.







      share|cite|improve this answer










      New contributor




      Dante Grevino is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this answer



      share|cite|improve this answer








      edited 5 hours ago





















      New contributor




      Dante Grevino is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      answered 13 hours ago









      Dante Grevino

      2364




      2364




      New contributor




      Dante Grevino is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Dante Grevino is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Dante Grevino is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.












      • Typo? It looks as though you meant to say because it takes values (rather than because take values).
        – PJTraill
        6 hours ago










      • @PJTraill Yes, I corrected it.
        – Dante Grevino
        5 hours ago


















      • Typo? It looks as though you meant to say because it takes values (rather than because take values).
        – PJTraill
        6 hours ago










      • @PJTraill Yes, I corrected it.
        – Dante Grevino
        5 hours ago
















      Typo? It looks as though you meant to say because it takes values (rather than because take values).
      – PJTraill
      6 hours ago




      Typo? It looks as though you meant to say because it takes values (rather than because take values).
      – PJTraill
      6 hours ago












      @PJTraill Yes, I corrected it.
      – Dante Grevino
      5 hours ago




      @PJTraill Yes, I corrected it.
      – Dante Grevino
      5 hours ago










      up vote
      1
      down vote













      The set $D:=f^{-1}(f(a))cup f^{-1}(f(b))$ is closed by continuity of $f$ and dense in $I$ by the special property. Clearly $D$ does not intersect the open set $Isetminus D$. By defnition of dense, this means that $Isetminus D$ is empty. Hence $I=D$. This makes $I$ the union of the two non-empty closed sets $f^{-1}(f(a))$, $f^{-1}(f(b))$. As $I$ is connected, these sets must overlap, which means that $f(a)=f(b)$ and ultimately that $f^{-1}(f(a))=I$, i.e., $f$ is constant.






      share|cite|improve this answer

























        up vote
        1
        down vote













        The set $D:=f^{-1}(f(a))cup f^{-1}(f(b))$ is closed by continuity of $f$ and dense in $I$ by the special property. Clearly $D$ does not intersect the open set $Isetminus D$. By defnition of dense, this means that $Isetminus D$ is empty. Hence $I=D$. This makes $I$ the union of the two non-empty closed sets $f^{-1}(f(a))$, $f^{-1}(f(b))$. As $I$ is connected, these sets must overlap, which means that $f(a)=f(b)$ and ultimately that $f^{-1}(f(a))=I$, i.e., $f$ is constant.






        share|cite|improve this answer























          up vote
          1
          down vote










          up vote
          1
          down vote









          The set $D:=f^{-1}(f(a))cup f^{-1}(f(b))$ is closed by continuity of $f$ and dense in $I$ by the special property. Clearly $D$ does not intersect the open set $Isetminus D$. By defnition of dense, this means that $Isetminus D$ is empty. Hence $I=D$. This makes $I$ the union of the two non-empty closed sets $f^{-1}(f(a))$, $f^{-1}(f(b))$. As $I$ is connected, these sets must overlap, which means that $f(a)=f(b)$ and ultimately that $f^{-1}(f(a))=I$, i.e., $f$ is constant.






          share|cite|improve this answer












          The set $D:=f^{-1}(f(a))cup f^{-1}(f(b))$ is closed by continuity of $f$ and dense in $I$ by the special property. Clearly $D$ does not intersect the open set $Isetminus D$. By defnition of dense, this means that $Isetminus D$ is empty. Hence $I=D$. This makes $I$ the union of the two non-empty closed sets $f^{-1}(f(a))$, $f^{-1}(f(b))$. As $I$ is connected, these sets must overlap, which means that $f(a)=f(b)$ and ultimately that $f^{-1}(f(a))=I$, i.e., $f$ is constant.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 8 hours ago









          Hagen von Eitzen

          274k21266494




          274k21266494






















              up vote
              0
              down vote













              You need to use intermediate value property of continuous functions.



              Suppose $f(a) =f(b) $. If $f$ is not constant in $[a, b] $ then there is some value of $f$ which differs from $f(a) =f(b) $ and let's suppose this value $f(c) > f(a) $ (the case $f(c) <f(a) $ is handled in a similar manner). By continuity there is an interval of type $[c-delta, c+delta] $ where all values of $f$ are greater than $f(a) $. And this contradicts the given hypotheses. Thus $f$ must be a constant function.



              The case when $f(a) neq f(b) $ leads us to a contradiction as shown next. Let's us assume $f(a) <f(b) $ and choose $k$ such that $f(a) <k<f(b) $. By intermediate value property there is a $cin(a, b) $ for which $f(c) =k$. And by continuity there is an interval of type $[c-delta, c+delta] $ where all values of $f$ lie strictly between $f(a)$ and $f(b) $. This contradiction shows that we must have $f(a) =f(b) $ and as shown earlier the function is constant.






              share|cite|improve this answer

























                up vote
                0
                down vote













                You need to use intermediate value property of continuous functions.



                Suppose $f(a) =f(b) $. If $f$ is not constant in $[a, b] $ then there is some value of $f$ which differs from $f(a) =f(b) $ and let's suppose this value $f(c) > f(a) $ (the case $f(c) <f(a) $ is handled in a similar manner). By continuity there is an interval of type $[c-delta, c+delta] $ where all values of $f$ are greater than $f(a) $. And this contradicts the given hypotheses. Thus $f$ must be a constant function.



                The case when $f(a) neq f(b) $ leads us to a contradiction as shown next. Let's us assume $f(a) <f(b) $ and choose $k$ such that $f(a) <k<f(b) $. By intermediate value property there is a $cin(a, b) $ for which $f(c) =k$. And by continuity there is an interval of type $[c-delta, c+delta] $ where all values of $f$ lie strictly between $f(a)$ and $f(b) $. This contradiction shows that we must have $f(a) =f(b) $ and as shown earlier the function is constant.






                share|cite|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  You need to use intermediate value property of continuous functions.



                  Suppose $f(a) =f(b) $. If $f$ is not constant in $[a, b] $ then there is some value of $f$ which differs from $f(a) =f(b) $ and let's suppose this value $f(c) > f(a) $ (the case $f(c) <f(a) $ is handled in a similar manner). By continuity there is an interval of type $[c-delta, c+delta] $ where all values of $f$ are greater than $f(a) $. And this contradicts the given hypotheses. Thus $f$ must be a constant function.



                  The case when $f(a) neq f(b) $ leads us to a contradiction as shown next. Let's us assume $f(a) <f(b) $ and choose $k$ such that $f(a) <k<f(b) $. By intermediate value property there is a $cin(a, b) $ for which $f(c) =k$. And by continuity there is an interval of type $[c-delta, c+delta] $ where all values of $f$ lie strictly between $f(a)$ and $f(b) $. This contradiction shows that we must have $f(a) =f(b) $ and as shown earlier the function is constant.






                  share|cite|improve this answer












                  You need to use intermediate value property of continuous functions.



                  Suppose $f(a) =f(b) $. If $f$ is not constant in $[a, b] $ then there is some value of $f$ which differs from $f(a) =f(b) $ and let's suppose this value $f(c) > f(a) $ (the case $f(c) <f(a) $ is handled in a similar manner). By continuity there is an interval of type $[c-delta, c+delta] $ where all values of $f$ are greater than $f(a) $. And this contradicts the given hypotheses. Thus $f$ must be a constant function.



                  The case when $f(a) neq f(b) $ leads us to a contradiction as shown next. Let's us assume $f(a) <f(b) $ and choose $k$ such that $f(a) <k<f(b) $. By intermediate value property there is a $cin(a, b) $ for which $f(c) =k$. And by continuity there is an interval of type $[c-delta, c+delta] $ where all values of $f$ lie strictly between $f(a)$ and $f(b) $. This contradiction shows that we must have $f(a) =f(b) $ and as shown earlier the function is constant.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 hours ago









                  Paramanand Singh

                  48.1k555156




                  48.1k555156






























                       

                      draft saved


                      draft discarded



















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009279%2fproving-such-a-function-is-always-constant%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Create new schema in PostgreSQL using DBeaver

                      Deepest pit of an array with Javascript: test on Codility

                      Costa Masnaga