In any group of 17 people, where each person knows 4 others, you can find 2 people, which don't know each...











up vote
11
down vote

favorite
6












I have a problem with proof of this (graph theory):




In any group of 17 people, where each person knows exactly 4 people, you can
find 2 people, which don't know each other and have no common friends.




I translated this to proving, that there exists a pair of vertices ${v,w}$, which aren't connected, that is, there isn't edge $(v,w)$ and for any other vertex $x$ from $V$ applies $(x, v) veebar (x, w)$ or there is no edges between $x$ and $v$ and between $x$ and $w$, but then I am stuck.



I tried using Pigeonhole Principle, but I couldn't use it correctly, I think. I couldn't use Ramsey theory too.



Any help and hints would be appreciated.



I drew two examples of these graphs for help:
1st graph![secondGraph](https://i.imgur.com/a/Fnbmq7V.jpg)










share|cite|improve this question









New contributor




ljaniec is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
















  • 1




    I do not think that this problem has a simple solution. Any proof will most likely have to prove the non-existence of a Moore graph with girth $5$ and degree $4$. As far as I know, there is no non-algebraic proof. See the pdf file in the link in my answer.
    – Batominovski
    yesterday












  • By the way, how did you draw your graphs? Which software did you use? They look very nice.
    – Batominovski
    yesterday






  • 1




    I used an online tool from there.
    – ljaniec
    yesterday















up vote
11
down vote

favorite
6












I have a problem with proof of this (graph theory):




In any group of 17 people, where each person knows exactly 4 people, you can
find 2 people, which don't know each other and have no common friends.




I translated this to proving, that there exists a pair of vertices ${v,w}$, which aren't connected, that is, there isn't edge $(v,w)$ and for any other vertex $x$ from $V$ applies $(x, v) veebar (x, w)$ or there is no edges between $x$ and $v$ and between $x$ and $w$, but then I am stuck.



I tried using Pigeonhole Principle, but I couldn't use it correctly, I think. I couldn't use Ramsey theory too.



Any help and hints would be appreciated.



I drew two examples of these graphs for help:
1st graph![secondGraph](https://i.imgur.com/a/Fnbmq7V.jpg)










share|cite|improve this question









New contributor




ljaniec is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
















  • 1




    I do not think that this problem has a simple solution. Any proof will most likely have to prove the non-existence of a Moore graph with girth $5$ and degree $4$. As far as I know, there is no non-algebraic proof. See the pdf file in the link in my answer.
    – Batominovski
    yesterday












  • By the way, how did you draw your graphs? Which software did you use? They look very nice.
    – Batominovski
    yesterday






  • 1




    I used an online tool from there.
    – ljaniec
    yesterday













up vote
11
down vote

favorite
6









up vote
11
down vote

favorite
6






6





I have a problem with proof of this (graph theory):




In any group of 17 people, where each person knows exactly 4 people, you can
find 2 people, which don't know each other and have no common friends.




I translated this to proving, that there exists a pair of vertices ${v,w}$, which aren't connected, that is, there isn't edge $(v,w)$ and for any other vertex $x$ from $V$ applies $(x, v) veebar (x, w)$ or there is no edges between $x$ and $v$ and between $x$ and $w$, but then I am stuck.



I tried using Pigeonhole Principle, but I couldn't use it correctly, I think. I couldn't use Ramsey theory too.



Any help and hints would be appreciated.



I drew two examples of these graphs for help:
1st graph![secondGraph](https://i.imgur.com/a/Fnbmq7V.jpg)










share|cite|improve this question









New contributor




ljaniec is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











I have a problem with proof of this (graph theory):




In any group of 17 people, where each person knows exactly 4 people, you can
find 2 people, which don't know each other and have no common friends.




I translated this to proving, that there exists a pair of vertices ${v,w}$, which aren't connected, that is, there isn't edge $(v,w)$ and for any other vertex $x$ from $V$ applies $(x, v) veebar (x, w)$ or there is no edges between $x$ and $v$ and between $x$ and $w$, but then I am stuck.



I tried using Pigeonhole Principle, but I couldn't use it correctly, I think. I couldn't use Ramsey theory too.



Any help and hints would be appreciated.



I drew two examples of these graphs for help:
1st graph![secondGraph](https://i.imgur.com/a/Fnbmq7V.jpg)







combinatorics discrete-mathematics graph-theory






share|cite|improve this question









New contributor




ljaniec is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




ljaniec is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 11 hours ago









Zvi

3,165221




3,165221






New contributor




ljaniec is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked yesterday









ljaniec

615




615




New contributor




ljaniec is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





ljaniec is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






ljaniec is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 1




    I do not think that this problem has a simple solution. Any proof will most likely have to prove the non-existence of a Moore graph with girth $5$ and degree $4$. As far as I know, there is no non-algebraic proof. See the pdf file in the link in my answer.
    – Batominovski
    yesterday












  • By the way, how did you draw your graphs? Which software did you use? They look very nice.
    – Batominovski
    yesterday






  • 1




    I used an online tool from there.
    – ljaniec
    yesterday














  • 1




    I do not think that this problem has a simple solution. Any proof will most likely have to prove the non-existence of a Moore graph with girth $5$ and degree $4$. As far as I know, there is no non-algebraic proof. See the pdf file in the link in my answer.
    – Batominovski
    yesterday












  • By the way, how did you draw your graphs? Which software did you use? They look very nice.
    – Batominovski
    yesterday






  • 1




    I used an online tool from there.
    – ljaniec
    yesterday








1




1




I do not think that this problem has a simple solution. Any proof will most likely have to prove the non-existence of a Moore graph with girth $5$ and degree $4$. As far as I know, there is no non-algebraic proof. See the pdf file in the link in my answer.
– Batominovski
yesterday






I do not think that this problem has a simple solution. Any proof will most likely have to prove the non-existence of a Moore graph with girth $5$ and degree $4$. As far as I know, there is no non-algebraic proof. See the pdf file in the link in my answer.
– Batominovski
yesterday














By the way, how did you draw your graphs? Which software did you use? They look very nice.
– Batominovski
yesterday




By the way, how did you draw your graphs? Which software did you use? They look very nice.
– Batominovski
yesterday




1




1




I used an online tool from there.
– ljaniec
yesterday




I used an online tool from there.
– ljaniec
yesterday










2 Answers
2






active

oldest

votes

















up vote
6
down vote



accepted










Let $G(V,E)$ be a $4$-regular simple graph on $17$ vertices. We claim that there are two vertices $u,vin V$ such that $uneq v$, $u$ is not adjacent to $v$, and $u$ and $v$ do not have a common neighbor. We prove by contradiction by assuming that, for any two distinct vertices $u$ and $v$ of $G$, if $u$ is not adjacent to $v$, then $u$ and $v$ have a common neighbor.



Let $S$ denote all pairs $big({u,v},wbig)$ with $u,v,win V$ such that $uneq v$, ${u,v}notin E$, and $w$ is adjacent to both $u$ and $v$. For each $win V$, $w$ has four neighbors. Therefore, at most $binom{4}{2}$ pairs of neighbors of $w$ are not adjacent. This proves that
$$|S|leq binom{4}{2},|V|=6,|V|=102,.tag{*}$$



Now, $|E|=dfrac{4cdot |V|}{2}=2,|V|=34$ by the Handshake Lemma. Thus, there are $$binom{17}{2}-|E|=102$$ pairs of vertices ${u,v}$ that are not edges of $G$. Each anti-edge pair ${u,v}$ produces at least one element of $S$, due to our hypothesis on $G$. This proves that $$|S|geq 102,.tag{#}$$



From (*) and (#), we must have $|S|=102$. For (#) to be an equality, every anti-edge pair ${u,v}$ must have exactly one common neighbor $win V$. Additionally, $G$ must be a triangle-free graph for (*) to become an equality. This means $G$ is both triangle-free and quadrilateral-free. Therefore, $G$ is a graph on $17=4^2+1$ vertices with girth $ggeq 5$ in which all vertices have degree $4$. By the Hoffman-Singleton Theorem (for a proof, see here), if there exists an $r$-regular simple graph on $r^2+1$ vertices with girth at least $5$, then $rin{1,2,3,7,57}$ (we know a partial converse, that is, for $rin{1,2,3,7}$, there exists such a graph, but it is still a mystery for $r=57$, as you may guess, it is not easy to construct a graph on $57^2+1=3250$ vertices). This yields the desired contradiction.






share|cite|improve this answer























  • Thank you for including links to the additional material, I don't know the used theorem with girth. I will gladly learn it!
    – ljaniec
    yesterday








  • 1




    @ljaniec This theorem has one of the most unexpected and beautiful proofs I know. So, I am sure that it will benefit you greatly to learn such tricks.
    – Batominovski
    yesterday


















up vote
0
down vote













EDIT: I submitted a less than helpful response the first time. Here is my proof in this edit.



enter image description here



When all $17$ people within a group know $4$ people from the group, then there are $34$ friend pairings.
In the above diagram, ensuring that everyone is at least a friend of a friend requires $52$ pairings "so far" just for persons $1$ through $5$. I have only worked the requirement for persons $1$ to $5$ because it already exceeds the requirement of knowing exactly $4$ others.



Every person in the group doesn’t personally know $12$ others in the group. But for there to be a possibility of sharing a friend with all $12$ others, every person’s $4$ friends must between them know all the other $12$.



In the diagram above, person $1$ personally knows $4$ others $(2,3,4,5)$. And between this $4$, they know all the other $12$ people ($6$ through $17$). But the same situation must exist for the friends of $1$, ($2,3,4$ and $5$). So, on the chart this requirement has been filled in where each set of $4$ friends for $2,3,4,5$ must know their corresponding other $12$. When this is done however, the number of friends for some of the people exceeds $4$. Not only that, but ensuring everyone is a least a friend of a friend hasn't been done for all $17$ in the group.



These are the $5$ acquaintance pairings so far:



$17 (8,11,12,13,14); 12 (6,7,8,10,17); 7(9,12,13,14,15)$



$16 (8,9,10,11,14); 11 (6,13,15,16,17); 6 (9,10,11,12,15)$



$15 (6,7,8,11,14); 10 (6,12,13,14,16)$



$14 (7,10,15,16,17); 9 (6,7,8,13,16)$



$13 (7,9,10,11,17); 8 (9,12,15,16,17)$



Therefore, for all unacquainted people to share a common friend, the unacquainted people have to know more than $4$ people. Hence with each person only knowing $4$ others, there will always be at least two people who don’t know each other and do not share a common friend.



A follow up question could be, what is the least number of acquaintances each person must have to ensure that everyone is at least a friend of a friend?



enter image description here






share|cite|improve this answer























  • Down vote, what am I missing?
    – Phil H
    yesterday










  • This is an example, not a proof.
    – helper
    yesterday










  • @helper Got it, revised my answer to relay this. A counter example would disprove the theory.
    – Phil H
    yesterday












  • But it's still not an answer, the OP is asking for help proving this.
    – helper
    yesterday










  • It is correct that 6,7,8 (who each knows 3) collectively have to know 9-17, but there is no reason to link 6 with 9-11. in fact, since 6 must be only 2-hops from 2,4,5, this means 6 must link with exactly 1 of 9-11, 1 of 12-14 and 1 of 15-17. suppose WOLOG 6 links with 9,12,15, then 6 must reach 10,11 via 12,15. etc. the challenge is to show that this is impossible to satisfy for everybody.
    – antkam
    9 hours ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});






ljaniec is a new contributor. Be nice, and check out our Code of Conduct.










 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003926%2fin-any-group-of-17-people-where-each-person-knows-4-others-you-can-find-2-peop%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
6
down vote



accepted










Let $G(V,E)$ be a $4$-regular simple graph on $17$ vertices. We claim that there are two vertices $u,vin V$ such that $uneq v$, $u$ is not adjacent to $v$, and $u$ and $v$ do not have a common neighbor. We prove by contradiction by assuming that, for any two distinct vertices $u$ and $v$ of $G$, if $u$ is not adjacent to $v$, then $u$ and $v$ have a common neighbor.



Let $S$ denote all pairs $big({u,v},wbig)$ with $u,v,win V$ such that $uneq v$, ${u,v}notin E$, and $w$ is adjacent to both $u$ and $v$. For each $win V$, $w$ has four neighbors. Therefore, at most $binom{4}{2}$ pairs of neighbors of $w$ are not adjacent. This proves that
$$|S|leq binom{4}{2},|V|=6,|V|=102,.tag{*}$$



Now, $|E|=dfrac{4cdot |V|}{2}=2,|V|=34$ by the Handshake Lemma. Thus, there are $$binom{17}{2}-|E|=102$$ pairs of vertices ${u,v}$ that are not edges of $G$. Each anti-edge pair ${u,v}$ produces at least one element of $S$, due to our hypothesis on $G$. This proves that $$|S|geq 102,.tag{#}$$



From (*) and (#), we must have $|S|=102$. For (#) to be an equality, every anti-edge pair ${u,v}$ must have exactly one common neighbor $win V$. Additionally, $G$ must be a triangle-free graph for (*) to become an equality. This means $G$ is both triangle-free and quadrilateral-free. Therefore, $G$ is a graph on $17=4^2+1$ vertices with girth $ggeq 5$ in which all vertices have degree $4$. By the Hoffman-Singleton Theorem (for a proof, see here), if there exists an $r$-regular simple graph on $r^2+1$ vertices with girth at least $5$, then $rin{1,2,3,7,57}$ (we know a partial converse, that is, for $rin{1,2,3,7}$, there exists such a graph, but it is still a mystery for $r=57$, as you may guess, it is not easy to construct a graph on $57^2+1=3250$ vertices). This yields the desired contradiction.






share|cite|improve this answer























  • Thank you for including links to the additional material, I don't know the used theorem with girth. I will gladly learn it!
    – ljaniec
    yesterday








  • 1




    @ljaniec This theorem has one of the most unexpected and beautiful proofs I know. So, I am sure that it will benefit you greatly to learn such tricks.
    – Batominovski
    yesterday















up vote
6
down vote



accepted










Let $G(V,E)$ be a $4$-regular simple graph on $17$ vertices. We claim that there are two vertices $u,vin V$ such that $uneq v$, $u$ is not adjacent to $v$, and $u$ and $v$ do not have a common neighbor. We prove by contradiction by assuming that, for any two distinct vertices $u$ and $v$ of $G$, if $u$ is not adjacent to $v$, then $u$ and $v$ have a common neighbor.



Let $S$ denote all pairs $big({u,v},wbig)$ with $u,v,win V$ such that $uneq v$, ${u,v}notin E$, and $w$ is adjacent to both $u$ and $v$. For each $win V$, $w$ has four neighbors. Therefore, at most $binom{4}{2}$ pairs of neighbors of $w$ are not adjacent. This proves that
$$|S|leq binom{4}{2},|V|=6,|V|=102,.tag{*}$$



Now, $|E|=dfrac{4cdot |V|}{2}=2,|V|=34$ by the Handshake Lemma. Thus, there are $$binom{17}{2}-|E|=102$$ pairs of vertices ${u,v}$ that are not edges of $G$. Each anti-edge pair ${u,v}$ produces at least one element of $S$, due to our hypothesis on $G$. This proves that $$|S|geq 102,.tag{#}$$



From (*) and (#), we must have $|S|=102$. For (#) to be an equality, every anti-edge pair ${u,v}$ must have exactly one common neighbor $win V$. Additionally, $G$ must be a triangle-free graph for (*) to become an equality. This means $G$ is both triangle-free and quadrilateral-free. Therefore, $G$ is a graph on $17=4^2+1$ vertices with girth $ggeq 5$ in which all vertices have degree $4$. By the Hoffman-Singleton Theorem (for a proof, see here), if there exists an $r$-regular simple graph on $r^2+1$ vertices with girth at least $5$, then $rin{1,2,3,7,57}$ (we know a partial converse, that is, for $rin{1,2,3,7}$, there exists such a graph, but it is still a mystery for $r=57$, as you may guess, it is not easy to construct a graph on $57^2+1=3250$ vertices). This yields the desired contradiction.






share|cite|improve this answer























  • Thank you for including links to the additional material, I don't know the used theorem with girth. I will gladly learn it!
    – ljaniec
    yesterday








  • 1




    @ljaniec This theorem has one of the most unexpected and beautiful proofs I know. So, I am sure that it will benefit you greatly to learn such tricks.
    – Batominovski
    yesterday













up vote
6
down vote



accepted







up vote
6
down vote



accepted






Let $G(V,E)$ be a $4$-regular simple graph on $17$ vertices. We claim that there are two vertices $u,vin V$ such that $uneq v$, $u$ is not adjacent to $v$, and $u$ and $v$ do not have a common neighbor. We prove by contradiction by assuming that, for any two distinct vertices $u$ and $v$ of $G$, if $u$ is not adjacent to $v$, then $u$ and $v$ have a common neighbor.



Let $S$ denote all pairs $big({u,v},wbig)$ with $u,v,win V$ such that $uneq v$, ${u,v}notin E$, and $w$ is adjacent to both $u$ and $v$. For each $win V$, $w$ has four neighbors. Therefore, at most $binom{4}{2}$ pairs of neighbors of $w$ are not adjacent. This proves that
$$|S|leq binom{4}{2},|V|=6,|V|=102,.tag{*}$$



Now, $|E|=dfrac{4cdot |V|}{2}=2,|V|=34$ by the Handshake Lemma. Thus, there are $$binom{17}{2}-|E|=102$$ pairs of vertices ${u,v}$ that are not edges of $G$. Each anti-edge pair ${u,v}$ produces at least one element of $S$, due to our hypothesis on $G$. This proves that $$|S|geq 102,.tag{#}$$



From (*) and (#), we must have $|S|=102$. For (#) to be an equality, every anti-edge pair ${u,v}$ must have exactly one common neighbor $win V$. Additionally, $G$ must be a triangle-free graph for (*) to become an equality. This means $G$ is both triangle-free and quadrilateral-free. Therefore, $G$ is a graph on $17=4^2+1$ vertices with girth $ggeq 5$ in which all vertices have degree $4$. By the Hoffman-Singleton Theorem (for a proof, see here), if there exists an $r$-regular simple graph on $r^2+1$ vertices with girth at least $5$, then $rin{1,2,3,7,57}$ (we know a partial converse, that is, for $rin{1,2,3,7}$, there exists such a graph, but it is still a mystery for $r=57$, as you may guess, it is not easy to construct a graph on $57^2+1=3250$ vertices). This yields the desired contradiction.






share|cite|improve this answer














Let $G(V,E)$ be a $4$-regular simple graph on $17$ vertices. We claim that there are two vertices $u,vin V$ such that $uneq v$, $u$ is not adjacent to $v$, and $u$ and $v$ do not have a common neighbor. We prove by contradiction by assuming that, for any two distinct vertices $u$ and $v$ of $G$, if $u$ is not adjacent to $v$, then $u$ and $v$ have a common neighbor.



Let $S$ denote all pairs $big({u,v},wbig)$ with $u,v,win V$ such that $uneq v$, ${u,v}notin E$, and $w$ is adjacent to both $u$ and $v$. For each $win V$, $w$ has four neighbors. Therefore, at most $binom{4}{2}$ pairs of neighbors of $w$ are not adjacent. This proves that
$$|S|leq binom{4}{2},|V|=6,|V|=102,.tag{*}$$



Now, $|E|=dfrac{4cdot |V|}{2}=2,|V|=34$ by the Handshake Lemma. Thus, there are $$binom{17}{2}-|E|=102$$ pairs of vertices ${u,v}$ that are not edges of $G$. Each anti-edge pair ${u,v}$ produces at least one element of $S$, due to our hypothesis on $G$. This proves that $$|S|geq 102,.tag{#}$$



From (*) and (#), we must have $|S|=102$. For (#) to be an equality, every anti-edge pair ${u,v}$ must have exactly one common neighbor $win V$. Additionally, $G$ must be a triangle-free graph for (*) to become an equality. This means $G$ is both triangle-free and quadrilateral-free. Therefore, $G$ is a graph on $17=4^2+1$ vertices with girth $ggeq 5$ in which all vertices have degree $4$. By the Hoffman-Singleton Theorem (for a proof, see here), if there exists an $r$-regular simple graph on $r^2+1$ vertices with girth at least $5$, then $rin{1,2,3,7,57}$ (we know a partial converse, that is, for $rin{1,2,3,7}$, there exists such a graph, but it is still a mystery for $r=57$, as you may guess, it is not easy to construct a graph on $57^2+1=3250$ vertices). This yields the desired contradiction.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited yesterday

























answered yesterday









Batominovski

31.1k23187




31.1k23187












  • Thank you for including links to the additional material, I don't know the used theorem with girth. I will gladly learn it!
    – ljaniec
    yesterday








  • 1




    @ljaniec This theorem has one of the most unexpected and beautiful proofs I know. So, I am sure that it will benefit you greatly to learn such tricks.
    – Batominovski
    yesterday


















  • Thank you for including links to the additional material, I don't know the used theorem with girth. I will gladly learn it!
    – ljaniec
    yesterday








  • 1




    @ljaniec This theorem has one of the most unexpected and beautiful proofs I know. So, I am sure that it will benefit you greatly to learn such tricks.
    – Batominovski
    yesterday
















Thank you for including links to the additional material, I don't know the used theorem with girth. I will gladly learn it!
– ljaniec
yesterday






Thank you for including links to the additional material, I don't know the used theorem with girth. I will gladly learn it!
– ljaniec
yesterday






1




1




@ljaniec This theorem has one of the most unexpected and beautiful proofs I know. So, I am sure that it will benefit you greatly to learn such tricks.
– Batominovski
yesterday




@ljaniec This theorem has one of the most unexpected and beautiful proofs I know. So, I am sure that it will benefit you greatly to learn such tricks.
– Batominovski
yesterday










up vote
0
down vote













EDIT: I submitted a less than helpful response the first time. Here is my proof in this edit.



enter image description here



When all $17$ people within a group know $4$ people from the group, then there are $34$ friend pairings.
In the above diagram, ensuring that everyone is at least a friend of a friend requires $52$ pairings "so far" just for persons $1$ through $5$. I have only worked the requirement for persons $1$ to $5$ because it already exceeds the requirement of knowing exactly $4$ others.



Every person in the group doesn’t personally know $12$ others in the group. But for there to be a possibility of sharing a friend with all $12$ others, every person’s $4$ friends must between them know all the other $12$.



In the diagram above, person $1$ personally knows $4$ others $(2,3,4,5)$. And between this $4$, they know all the other $12$ people ($6$ through $17$). But the same situation must exist for the friends of $1$, ($2,3,4$ and $5$). So, on the chart this requirement has been filled in where each set of $4$ friends for $2,3,4,5$ must know their corresponding other $12$. When this is done however, the number of friends for some of the people exceeds $4$. Not only that, but ensuring everyone is a least a friend of a friend hasn't been done for all $17$ in the group.



These are the $5$ acquaintance pairings so far:



$17 (8,11,12,13,14); 12 (6,7,8,10,17); 7(9,12,13,14,15)$



$16 (8,9,10,11,14); 11 (6,13,15,16,17); 6 (9,10,11,12,15)$



$15 (6,7,8,11,14); 10 (6,12,13,14,16)$



$14 (7,10,15,16,17); 9 (6,7,8,13,16)$



$13 (7,9,10,11,17); 8 (9,12,15,16,17)$



Therefore, for all unacquainted people to share a common friend, the unacquainted people have to know more than $4$ people. Hence with each person only knowing $4$ others, there will always be at least two people who don’t know each other and do not share a common friend.



A follow up question could be, what is the least number of acquaintances each person must have to ensure that everyone is at least a friend of a friend?



enter image description here






share|cite|improve this answer























  • Down vote, what am I missing?
    – Phil H
    yesterday










  • This is an example, not a proof.
    – helper
    yesterday










  • @helper Got it, revised my answer to relay this. A counter example would disprove the theory.
    – Phil H
    yesterday












  • But it's still not an answer, the OP is asking for help proving this.
    – helper
    yesterday










  • It is correct that 6,7,8 (who each knows 3) collectively have to know 9-17, but there is no reason to link 6 with 9-11. in fact, since 6 must be only 2-hops from 2,4,5, this means 6 must link with exactly 1 of 9-11, 1 of 12-14 and 1 of 15-17. suppose WOLOG 6 links with 9,12,15, then 6 must reach 10,11 via 12,15. etc. the challenge is to show that this is impossible to satisfy for everybody.
    – antkam
    9 hours ago















up vote
0
down vote













EDIT: I submitted a less than helpful response the first time. Here is my proof in this edit.



enter image description here



When all $17$ people within a group know $4$ people from the group, then there are $34$ friend pairings.
In the above diagram, ensuring that everyone is at least a friend of a friend requires $52$ pairings "so far" just for persons $1$ through $5$. I have only worked the requirement for persons $1$ to $5$ because it already exceeds the requirement of knowing exactly $4$ others.



Every person in the group doesn’t personally know $12$ others in the group. But for there to be a possibility of sharing a friend with all $12$ others, every person’s $4$ friends must between them know all the other $12$.



In the diagram above, person $1$ personally knows $4$ others $(2,3,4,5)$. And between this $4$, they know all the other $12$ people ($6$ through $17$). But the same situation must exist for the friends of $1$, ($2,3,4$ and $5$). So, on the chart this requirement has been filled in where each set of $4$ friends for $2,3,4,5$ must know their corresponding other $12$. When this is done however, the number of friends for some of the people exceeds $4$. Not only that, but ensuring everyone is a least a friend of a friend hasn't been done for all $17$ in the group.



These are the $5$ acquaintance pairings so far:



$17 (8,11,12,13,14); 12 (6,7,8,10,17); 7(9,12,13,14,15)$



$16 (8,9,10,11,14); 11 (6,13,15,16,17); 6 (9,10,11,12,15)$



$15 (6,7,8,11,14); 10 (6,12,13,14,16)$



$14 (7,10,15,16,17); 9 (6,7,8,13,16)$



$13 (7,9,10,11,17); 8 (9,12,15,16,17)$



Therefore, for all unacquainted people to share a common friend, the unacquainted people have to know more than $4$ people. Hence with each person only knowing $4$ others, there will always be at least two people who don’t know each other and do not share a common friend.



A follow up question could be, what is the least number of acquaintances each person must have to ensure that everyone is at least a friend of a friend?



enter image description here






share|cite|improve this answer























  • Down vote, what am I missing?
    – Phil H
    yesterday










  • This is an example, not a proof.
    – helper
    yesterday










  • @helper Got it, revised my answer to relay this. A counter example would disprove the theory.
    – Phil H
    yesterday












  • But it's still not an answer, the OP is asking for help proving this.
    – helper
    yesterday










  • It is correct that 6,7,8 (who each knows 3) collectively have to know 9-17, but there is no reason to link 6 with 9-11. in fact, since 6 must be only 2-hops from 2,4,5, this means 6 must link with exactly 1 of 9-11, 1 of 12-14 and 1 of 15-17. suppose WOLOG 6 links with 9,12,15, then 6 must reach 10,11 via 12,15. etc. the challenge is to show that this is impossible to satisfy for everybody.
    – antkam
    9 hours ago













up vote
0
down vote










up vote
0
down vote









EDIT: I submitted a less than helpful response the first time. Here is my proof in this edit.



enter image description here



When all $17$ people within a group know $4$ people from the group, then there are $34$ friend pairings.
In the above diagram, ensuring that everyone is at least a friend of a friend requires $52$ pairings "so far" just for persons $1$ through $5$. I have only worked the requirement for persons $1$ to $5$ because it already exceeds the requirement of knowing exactly $4$ others.



Every person in the group doesn’t personally know $12$ others in the group. But for there to be a possibility of sharing a friend with all $12$ others, every person’s $4$ friends must between them know all the other $12$.



In the diagram above, person $1$ personally knows $4$ others $(2,3,4,5)$. And between this $4$, they know all the other $12$ people ($6$ through $17$). But the same situation must exist for the friends of $1$, ($2,3,4$ and $5$). So, on the chart this requirement has been filled in where each set of $4$ friends for $2,3,4,5$ must know their corresponding other $12$. When this is done however, the number of friends for some of the people exceeds $4$. Not only that, but ensuring everyone is a least a friend of a friend hasn't been done for all $17$ in the group.



These are the $5$ acquaintance pairings so far:



$17 (8,11,12,13,14); 12 (6,7,8,10,17); 7(9,12,13,14,15)$



$16 (8,9,10,11,14); 11 (6,13,15,16,17); 6 (9,10,11,12,15)$



$15 (6,7,8,11,14); 10 (6,12,13,14,16)$



$14 (7,10,15,16,17); 9 (6,7,8,13,16)$



$13 (7,9,10,11,17); 8 (9,12,15,16,17)$



Therefore, for all unacquainted people to share a common friend, the unacquainted people have to know more than $4$ people. Hence with each person only knowing $4$ others, there will always be at least two people who don’t know each other and do not share a common friend.



A follow up question could be, what is the least number of acquaintances each person must have to ensure that everyone is at least a friend of a friend?



enter image description here






share|cite|improve this answer














EDIT: I submitted a less than helpful response the first time. Here is my proof in this edit.



enter image description here



When all $17$ people within a group know $4$ people from the group, then there are $34$ friend pairings.
In the above diagram, ensuring that everyone is at least a friend of a friend requires $52$ pairings "so far" just for persons $1$ through $5$. I have only worked the requirement for persons $1$ to $5$ because it already exceeds the requirement of knowing exactly $4$ others.



Every person in the group doesn’t personally know $12$ others in the group. But for there to be a possibility of sharing a friend with all $12$ others, every person’s $4$ friends must between them know all the other $12$.



In the diagram above, person $1$ personally knows $4$ others $(2,3,4,5)$. And between this $4$, they know all the other $12$ people ($6$ through $17$). But the same situation must exist for the friends of $1$, ($2,3,4$ and $5$). So, on the chart this requirement has been filled in where each set of $4$ friends for $2,3,4,5$ must know their corresponding other $12$. When this is done however, the number of friends for some of the people exceeds $4$. Not only that, but ensuring everyone is a least a friend of a friend hasn't been done for all $17$ in the group.



These are the $5$ acquaintance pairings so far:



$17 (8,11,12,13,14); 12 (6,7,8,10,17); 7(9,12,13,14,15)$



$16 (8,9,10,11,14); 11 (6,13,15,16,17); 6 (9,10,11,12,15)$



$15 (6,7,8,11,14); 10 (6,12,13,14,16)$



$14 (7,10,15,16,17); 9 (6,7,8,13,16)$



$13 (7,9,10,11,17); 8 (9,12,15,16,17)$



Therefore, for all unacquainted people to share a common friend, the unacquainted people have to know more than $4$ people. Hence with each person only knowing $4$ others, there will always be at least two people who don’t know each other and do not share a common friend.



A follow up question could be, what is the least number of acquaintances each person must have to ensure that everyone is at least a friend of a friend?



enter image description here







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 5 hours ago

























answered yesterday









Phil H

3,8532312




3,8532312












  • Down vote, what am I missing?
    – Phil H
    yesterday










  • This is an example, not a proof.
    – helper
    yesterday










  • @helper Got it, revised my answer to relay this. A counter example would disprove the theory.
    – Phil H
    yesterday












  • But it's still not an answer, the OP is asking for help proving this.
    – helper
    yesterday










  • It is correct that 6,7,8 (who each knows 3) collectively have to know 9-17, but there is no reason to link 6 with 9-11. in fact, since 6 must be only 2-hops from 2,4,5, this means 6 must link with exactly 1 of 9-11, 1 of 12-14 and 1 of 15-17. suppose WOLOG 6 links with 9,12,15, then 6 must reach 10,11 via 12,15. etc. the challenge is to show that this is impossible to satisfy for everybody.
    – antkam
    9 hours ago


















  • Down vote, what am I missing?
    – Phil H
    yesterday










  • This is an example, not a proof.
    – helper
    yesterday










  • @helper Got it, revised my answer to relay this. A counter example would disprove the theory.
    – Phil H
    yesterday












  • But it's still not an answer, the OP is asking for help proving this.
    – helper
    yesterday










  • It is correct that 6,7,8 (who each knows 3) collectively have to know 9-17, but there is no reason to link 6 with 9-11. in fact, since 6 must be only 2-hops from 2,4,5, this means 6 must link with exactly 1 of 9-11, 1 of 12-14 and 1 of 15-17. suppose WOLOG 6 links with 9,12,15, then 6 must reach 10,11 via 12,15. etc. the challenge is to show that this is impossible to satisfy for everybody.
    – antkam
    9 hours ago
















Down vote, what am I missing?
– Phil H
yesterday




Down vote, what am I missing?
– Phil H
yesterday












This is an example, not a proof.
– helper
yesterday




This is an example, not a proof.
– helper
yesterday












@helper Got it, revised my answer to relay this. A counter example would disprove the theory.
– Phil H
yesterday






@helper Got it, revised my answer to relay this. A counter example would disprove the theory.
– Phil H
yesterday














But it's still not an answer, the OP is asking for help proving this.
– helper
yesterday




But it's still not an answer, the OP is asking for help proving this.
– helper
yesterday












It is correct that 6,7,8 (who each knows 3) collectively have to know 9-17, but there is no reason to link 6 with 9-11. in fact, since 6 must be only 2-hops from 2,4,5, this means 6 must link with exactly 1 of 9-11, 1 of 12-14 and 1 of 15-17. suppose WOLOG 6 links with 9,12,15, then 6 must reach 10,11 via 12,15. etc. the challenge is to show that this is impossible to satisfy for everybody.
– antkam
9 hours ago




It is correct that 6,7,8 (who each knows 3) collectively have to know 9-17, but there is no reason to link 6 with 9-11. in fact, since 6 must be only 2-hops from 2,4,5, this means 6 must link with exactly 1 of 9-11, 1 of 12-14 and 1 of 15-17. suppose WOLOG 6 links with 9,12,15, then 6 must reach 10,11 via 12,15. etc. the challenge is to show that this is impossible to satisfy for everybody.
– antkam
9 hours ago










ljaniec is a new contributor. Be nice, and check out our Code of Conduct.










 

draft saved


draft discarded


















ljaniec is a new contributor. Be nice, and check out our Code of Conduct.













ljaniec is a new contributor. Be nice, and check out our Code of Conduct.












ljaniec is a new contributor. Be nice, and check out our Code of Conduct.















 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003926%2fin-any-group-of-17-people-where-each-person-knows-4-others-you-can-find-2-peop%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Costa Masnaga

Fotorealismo

Sidney Franklin