Swift Prims algorithm
$begingroup$
Lots of Prims algorithm implementations seem long, and rely on a priority queue implementation.
If I use an adjacency matrix I can then calculate the next item to take using functional programming in Swift.
func prims (_ matrix : [[Int]]) {
var selected = 0
var selectedSoFar = Set<Int>()
selectedSoFar.insert( (matrix[selected].enumerated().min{ $0.element < $1.element }?.offset)! )
while selectedSoFar.count < matrix.count {
var minValue = Int.max
var minIndex = selected
var initialRow = 0
for row in selectedSoFar {
let candidateMin = matrix[row].enumerated().filter{$0.element > 0 && !selectedSoFar.contains($0.offset) }.min{ $0.element < $1.element }
if (minValue > candidateMin?.element ?? Int.max ) {
minValue = candidateMin?.element ?? Int.max
minIndex = (candidateMin?.offset) ?? 0
initialRow = row
}
}
print ("edge value (minValue) with (initialRow) to (minIndex)")
selectedSoFar.insert(minIndex)
selected = (minValue)
}
}
let input = [[0,9,75,0,0],[9,0,95,19,42],[75,95,0,51,66],[0,19,51,0,31],[0,42,66,31,0]]
prims(input)
Essentially is there anything "wrong" with this implementation? This is not homework, my code runs correctly for the included output and I appreciate this is faster if I use an adjacency matrix. However the Ray Wenderlich implementation of Prims uses 7 files and >200 lines of code. Am I missing something?
swift
New contributor
$endgroup$
add a comment |
$begingroup$
Lots of Prims algorithm implementations seem long, and rely on a priority queue implementation.
If I use an adjacency matrix I can then calculate the next item to take using functional programming in Swift.
func prims (_ matrix : [[Int]]) {
var selected = 0
var selectedSoFar = Set<Int>()
selectedSoFar.insert( (matrix[selected].enumerated().min{ $0.element < $1.element }?.offset)! )
while selectedSoFar.count < matrix.count {
var minValue = Int.max
var minIndex = selected
var initialRow = 0
for row in selectedSoFar {
let candidateMin = matrix[row].enumerated().filter{$0.element > 0 && !selectedSoFar.contains($0.offset) }.min{ $0.element < $1.element }
if (minValue > candidateMin?.element ?? Int.max ) {
minValue = candidateMin?.element ?? Int.max
minIndex = (candidateMin?.offset) ?? 0
initialRow = row
}
}
print ("edge value (minValue) with (initialRow) to (minIndex)")
selectedSoFar.insert(minIndex)
selected = (minValue)
}
}
let input = [[0,9,75,0,0],[9,0,95,19,42],[75,95,0,51,66],[0,19,51,0,31],[0,42,66,31,0]]
prims(input)
Essentially is there anything "wrong" with this implementation? This is not homework, my code runs correctly for the included output and I appreciate this is faster if I use an adjacency matrix. However the Ray Wenderlich implementation of Prims uses 7 files and >200 lines of code. Am I missing something?
swift
New contributor
$endgroup$
add a comment |
$begingroup$
Lots of Prims algorithm implementations seem long, and rely on a priority queue implementation.
If I use an adjacency matrix I can then calculate the next item to take using functional programming in Swift.
func prims (_ matrix : [[Int]]) {
var selected = 0
var selectedSoFar = Set<Int>()
selectedSoFar.insert( (matrix[selected].enumerated().min{ $0.element < $1.element }?.offset)! )
while selectedSoFar.count < matrix.count {
var minValue = Int.max
var minIndex = selected
var initialRow = 0
for row in selectedSoFar {
let candidateMin = matrix[row].enumerated().filter{$0.element > 0 && !selectedSoFar.contains($0.offset) }.min{ $0.element < $1.element }
if (minValue > candidateMin?.element ?? Int.max ) {
minValue = candidateMin?.element ?? Int.max
minIndex = (candidateMin?.offset) ?? 0
initialRow = row
}
}
print ("edge value (minValue) with (initialRow) to (minIndex)")
selectedSoFar.insert(minIndex)
selected = (minValue)
}
}
let input = [[0,9,75,0,0],[9,0,95,19,42],[75,95,0,51,66],[0,19,51,0,31],[0,42,66,31,0]]
prims(input)
Essentially is there anything "wrong" with this implementation? This is not homework, my code runs correctly for the included output and I appreciate this is faster if I use an adjacency matrix. However the Ray Wenderlich implementation of Prims uses 7 files and >200 lines of code. Am I missing something?
swift
New contributor
$endgroup$
Lots of Prims algorithm implementations seem long, and rely on a priority queue implementation.
If I use an adjacency matrix I can then calculate the next item to take using functional programming in Swift.
func prims (_ matrix : [[Int]]) {
var selected = 0
var selectedSoFar = Set<Int>()
selectedSoFar.insert( (matrix[selected].enumerated().min{ $0.element < $1.element }?.offset)! )
while selectedSoFar.count < matrix.count {
var minValue = Int.max
var minIndex = selected
var initialRow = 0
for row in selectedSoFar {
let candidateMin = matrix[row].enumerated().filter{$0.element > 0 && !selectedSoFar.contains($0.offset) }.min{ $0.element < $1.element }
if (minValue > candidateMin?.element ?? Int.max ) {
minValue = candidateMin?.element ?? Int.max
minIndex = (candidateMin?.offset) ?? 0
initialRow = row
}
}
print ("edge value (minValue) with (initialRow) to (minIndex)")
selectedSoFar.insert(minIndex)
selected = (minValue)
}
}
let input = [[0,9,75,0,0],[9,0,95,19,42],[75,95,0,51,66],[0,19,51,0,31],[0,42,66,31,0]]
prims(input)
Essentially is there anything "wrong" with this implementation? This is not homework, my code runs correctly for the included output and I appreciate this is faster if I use an adjacency matrix. However the Ray Wenderlich implementation of Prims uses 7 files and >200 lines of code. Am I missing something?
swift
swift
New contributor
New contributor
New contributor
asked 2 mins ago
WishIHadThreeGunsWishIHadThreeGuns
1
1
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
WishIHadThreeGuns is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215897%2fswift-prims-algorithm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
WishIHadThreeGuns is a new contributor. Be nice, and check out our Code of Conduct.
WishIHadThreeGuns is a new contributor. Be nice, and check out our Code of Conduct.
WishIHadThreeGuns is a new contributor. Be nice, and check out our Code of Conduct.
WishIHadThreeGuns is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215897%2fswift-prims-algorithm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown