Determining a vector orthogonal to $q_1=(1,1,1)$ and $q_3=(1,1,-2)$, why I'm wrong with my calculations?











up vote
1
down vote

favorite












Consider the vectors $q_1=(1,1,1)$ and $q_3=(1,1,-2)$. I need to find a third vector $q_2$ such that ${q_1,q_2,q_3}$ is a arthogonal basis for $mathbb{R}^3$.



My problem is the following: I did take $v=(1,0,0)$ and I did verify that ${q_1,q_3,v}$ is a basis for $mathbb{R}^3$. Then I did take $$q_2=v-langle v|q_1rangle q_1-langle v|q_3rangle q_3=(-1,-2,1)$$



And, by Gram-Schmidt process, $q_2$ must be orthogonal to $q_1$ and $q_3$. But, as we can see, it does not happen. So, where is my mistake?










share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    Consider the vectors $q_1=(1,1,1)$ and $q_3=(1,1,-2)$. I need to find a third vector $q_2$ such that ${q_1,q_2,q_3}$ is a arthogonal basis for $mathbb{R}^3$.



    My problem is the following: I did take $v=(1,0,0)$ and I did verify that ${q_1,q_3,v}$ is a basis for $mathbb{R}^3$. Then I did take $$q_2=v-langle v|q_1rangle q_1-langle v|q_3rangle q_3=(-1,-2,1)$$



    And, by Gram-Schmidt process, $q_2$ must be orthogonal to $q_1$ and $q_3$. But, as we can see, it does not happen. So, where is my mistake?










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Consider the vectors $q_1=(1,1,1)$ and $q_3=(1,1,-2)$. I need to find a third vector $q_2$ such that ${q_1,q_2,q_3}$ is a arthogonal basis for $mathbb{R}^3$.



      My problem is the following: I did take $v=(1,0,0)$ and I did verify that ${q_1,q_3,v}$ is a basis for $mathbb{R}^3$. Then I did take $$q_2=v-langle v|q_1rangle q_1-langle v|q_3rangle q_3=(-1,-2,1)$$



      And, by Gram-Schmidt process, $q_2$ must be orthogonal to $q_1$ and $q_3$. But, as we can see, it does not happen. So, where is my mistake?










      share|cite|improve this question















      Consider the vectors $q_1=(1,1,1)$ and $q_3=(1,1,-2)$. I need to find a third vector $q_2$ such that ${q_1,q_2,q_3}$ is a arthogonal basis for $mathbb{R}^3$.



      My problem is the following: I did take $v=(1,0,0)$ and I did verify that ${q_1,q_3,v}$ is a basis for $mathbb{R}^3$. Then I did take $$q_2=v-langle v|q_1rangle q_1-langle v|q_3rangle q_3=(-1,-2,1)$$



      And, by Gram-Schmidt process, $q_2$ must be orthogonal to $q_1$ and $q_3$. But, as we can see, it does not happen. So, where is my mistake?







      linear-algebra vectors orthogonality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 9 hours ago









      quid

      36.7k95093




      36.7k95093










      asked 11 hours ago









      Gödel

      1,351319




      1,351319






















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          HINT



          Since $q_1$ and $q_3$ are orthogonal it suffices to find $q_3$ by



          $$q_2=q_1times q_3$$



          As an alternative by GS we have



          $$q_2=v-langle v|hat q_1rangle hat q_1-langle v| hat q_3rangle hat q_3=(1,0,0)-frac13(1,1,1)-frac16(1,1,-2)=left(frac12,-frac12,0right)$$






          share|cite|improve this answer























          • I don't know why I don't use cross product before, It is a simple way to solve the problem.
            – Gödel
            11 hours ago










          • @Gödel Yes indeed it is the faster way in that case if we can't see that by inspection.
            – gimusi
            10 hours ago


















          up vote
          4
          down vote













          None of $q_1$ and $q_2$ are normalized. Hence, the formula would be
          $$ q_2=v-{langle v|q_1rangle over langle q_1|q_1rangle} q_1-{langle v|q_3rangle over langle q_3|q_3rangle} q_3 = ({1 over 2},-{1 over 2},0)$$.






          share|cite|improve this answer






























            up vote
            2
            down vote













            $$q_2=v-frac{langle v|q_1rangle}{langle q_1|q_1rangle} q_1-frac{langle v|q_3rangle}{langle q_3|q_3rangle} q_3$$






            share|cite|improve this answer





















              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














               

              draft saved


              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009351%2fdetermining-a-vector-orthogonal-to-q-1-1-1-1-and-q-3-1-1-2-why-im-wro%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              2
              down vote



              accepted










              HINT



              Since $q_1$ and $q_3$ are orthogonal it suffices to find $q_3$ by



              $$q_2=q_1times q_3$$



              As an alternative by GS we have



              $$q_2=v-langle v|hat q_1rangle hat q_1-langle v| hat q_3rangle hat q_3=(1,0,0)-frac13(1,1,1)-frac16(1,1,-2)=left(frac12,-frac12,0right)$$






              share|cite|improve this answer























              • I don't know why I don't use cross product before, It is a simple way to solve the problem.
                – Gödel
                11 hours ago










              • @Gödel Yes indeed it is the faster way in that case if we can't see that by inspection.
                – gimusi
                10 hours ago















              up vote
              2
              down vote



              accepted










              HINT



              Since $q_1$ and $q_3$ are orthogonal it suffices to find $q_3$ by



              $$q_2=q_1times q_3$$



              As an alternative by GS we have



              $$q_2=v-langle v|hat q_1rangle hat q_1-langle v| hat q_3rangle hat q_3=(1,0,0)-frac13(1,1,1)-frac16(1,1,-2)=left(frac12,-frac12,0right)$$






              share|cite|improve this answer























              • I don't know why I don't use cross product before, It is a simple way to solve the problem.
                – Gödel
                11 hours ago










              • @Gödel Yes indeed it is the faster way in that case if we can't see that by inspection.
                – gimusi
                10 hours ago













              up vote
              2
              down vote



              accepted







              up vote
              2
              down vote



              accepted






              HINT



              Since $q_1$ and $q_3$ are orthogonal it suffices to find $q_3$ by



              $$q_2=q_1times q_3$$



              As an alternative by GS we have



              $$q_2=v-langle v|hat q_1rangle hat q_1-langle v| hat q_3rangle hat q_3=(1,0,0)-frac13(1,1,1)-frac16(1,1,-2)=left(frac12,-frac12,0right)$$






              share|cite|improve this answer














              HINT



              Since $q_1$ and $q_3$ are orthogonal it suffices to find $q_3$ by



              $$q_2=q_1times q_3$$



              As an alternative by GS we have



              $$q_2=v-langle v|hat q_1rangle hat q_1-langle v| hat q_3rangle hat q_3=(1,0,0)-frac13(1,1,1)-frac16(1,1,-2)=left(frac12,-frac12,0right)$$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited 11 hours ago

























              answered 11 hours ago









              gimusi

              86.2k74392




              86.2k74392












              • I don't know why I don't use cross product before, It is a simple way to solve the problem.
                – Gödel
                11 hours ago










              • @Gödel Yes indeed it is the faster way in that case if we can't see that by inspection.
                – gimusi
                10 hours ago


















              • I don't know why I don't use cross product before, It is a simple way to solve the problem.
                – Gödel
                11 hours ago










              • @Gödel Yes indeed it is the faster way in that case if we can't see that by inspection.
                – gimusi
                10 hours ago
















              I don't know why I don't use cross product before, It is a simple way to solve the problem.
              – Gödel
              11 hours ago




              I don't know why I don't use cross product before, It is a simple way to solve the problem.
              – Gödel
              11 hours ago












              @Gödel Yes indeed it is the faster way in that case if we can't see that by inspection.
              – gimusi
              10 hours ago




              @Gödel Yes indeed it is the faster way in that case if we can't see that by inspection.
              – gimusi
              10 hours ago










              up vote
              4
              down vote













              None of $q_1$ and $q_2$ are normalized. Hence, the formula would be
              $$ q_2=v-{langle v|q_1rangle over langle q_1|q_1rangle} q_1-{langle v|q_3rangle over langle q_3|q_3rangle} q_3 = ({1 over 2},-{1 over 2},0)$$.






              share|cite|improve this answer



























                up vote
                4
                down vote













                None of $q_1$ and $q_2$ are normalized. Hence, the formula would be
                $$ q_2=v-{langle v|q_1rangle over langle q_1|q_1rangle} q_1-{langle v|q_3rangle over langle q_3|q_3rangle} q_3 = ({1 over 2},-{1 over 2},0)$$.






                share|cite|improve this answer

























                  up vote
                  4
                  down vote










                  up vote
                  4
                  down vote









                  None of $q_1$ and $q_2$ are normalized. Hence, the formula would be
                  $$ q_2=v-{langle v|q_1rangle over langle q_1|q_1rangle} q_1-{langle v|q_3rangle over langle q_3|q_3rangle} q_3 = ({1 over 2},-{1 over 2},0)$$.






                  share|cite|improve this answer














                  None of $q_1$ and $q_2$ are normalized. Hence, the formula would be
                  $$ q_2=v-{langle v|q_1rangle over langle q_1|q_1rangle} q_1-{langle v|q_3rangle over langle q_3|q_3rangle} q_3 = ({1 over 2},-{1 over 2},0)$$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 11 hours ago

























                  answered 11 hours ago









                  SinTan1729

                  2,302622




                  2,302622






















                      up vote
                      2
                      down vote













                      $$q_2=v-frac{langle v|q_1rangle}{langle q_1|q_1rangle} q_1-frac{langle v|q_3rangle}{langle q_3|q_3rangle} q_3$$






                      share|cite|improve this answer

























                        up vote
                        2
                        down vote













                        $$q_2=v-frac{langle v|q_1rangle}{langle q_1|q_1rangle} q_1-frac{langle v|q_3rangle}{langle q_3|q_3rangle} q_3$$






                        share|cite|improve this answer























                          up vote
                          2
                          down vote










                          up vote
                          2
                          down vote









                          $$q_2=v-frac{langle v|q_1rangle}{langle q_1|q_1rangle} q_1-frac{langle v|q_3rangle}{langle q_3|q_3rangle} q_3$$






                          share|cite|improve this answer












                          $$q_2=v-frac{langle v|q_1rangle}{langle q_1|q_1rangle} q_1-frac{langle v|q_3rangle}{langle q_3|q_3rangle} q_3$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 11 hours ago









                          Siong Thye Goh

                          93.6k1462114




                          93.6k1462114






























                               

                              draft saved


                              draft discarded



















































                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009351%2fdetermining-a-vector-orthogonal-to-q-1-1-1-1-and-q-3-1-1-2-why-im-wro%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Costa Masnaga

                              Fotorealismo

                              Sidney Franklin