Applying a function inside a dplyr pipe command











up vote
0
down vote

favorite












I am trying to apply a Trim function from the DescTools package to a data frame in R using the dplyr package.



What I have so far is the following:



x <- df %>%
group_by(Country) %>%
mutate_all(OfferPrice, Trim(trim = 0.1, na.rm = TRUE))


Which returns the following error:



Error in Trim(trim = 0.1, na.rm = TRUE) : 
argument "x" is missing, with no default


I know its a problem with the characteristics inside the Trim() part of the mutate but I cannot seem to apply this function inside dplyr.



The function trims the top and bottom 10% of the observations, hopefully removing any extreme values.



Data:



df <- structure(list(Country = c("AU", "AU", "AU", "AU", "AU", "AU", 
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB"), OfferPrice = c(0.25, 0.55,
0.065, 0.075, 0.019, 0.0114, 0.18, 0.015, 2.8, 3.62, 0.025, 0.07,
0.6, 0.9, 0.12, 2.72, 0.015, 0.015, 0.32, 0.2, 0.063, 0.01, 1.42,
0.0045, 0.02, 1.15, 0.2, 17.05, 0.009, 1.8, 3.22, 0.135, 0.35,
5, 0.37, 0.023, 0.014, 0.023, 0.35, 1.25, 0.05, 0.059, 0.2, 0.025,
5.45, 0.05, 0.3, 0.22, 0.04, 0.035, 2, 0.32, 0.2, 0.2, 0.02,
0.34, 0.04, 0.025, 0.03, 0.0125, 1.6, 0.03, 0.15, 13.5, 0.1,
0.3, 0.13, 0.115, 0.35, 0.2, 0.6, 0.7, 8, 14, 25, 15.75, 3.8,
2, 0.5, 35.2, 1.75, 0.12, 0.48, 0.15, 0.7, 0.075, 0.15, 14.5,
0.29, 0.58, 1.75, 9, 11.5, 0.5, 0.075, 0.12, 1.1, 0.6, 0.75,
0.26, 0.2, 0.12, 0.49, 12, 6.85, 0.55, 0.25, 1.6, 0.36, 0.06,
2, 0.272, 41, 0.15, 1.1, 4.1, 0.6, 0.08, 1.4, 3, 0.09, 0.15,
0.2, 0.3, 0.8, 0.21, 0.1, 0.05, 0.17, 0.1, 0.15, 0.05, 0.3, 0.6,
0.2, 0.5, 3.45, 3, 0.07, 0.1, 0.3, 7.2, 0.4, 0.1, 12.5, 0.07,
0.375, 0.25, 0.3, 1.15, 0.2, 3, 1, 0.3, 0.25, 530, 262, 20, 37.5,
3422, 295, 100, 0.085, 1925, 0.3, 107.5, 10, 2.1, 3, 15, 300,
690, 50, 410, 100, 120, 225, 40, 100, 100, 51, 10, 82, 9.58,
269, 0.5, 271, 100, 108, 0.3, 4.5, 0.5, 0.55, 50, 0.95, 275,
100, 170, 0.7), OfferTo1stOpen = c(18, -2.727274895, 9.230772972,
6.666662216, -15.78947067, 5.263155937, -2.777781725, 13.33333588,
5.000001907, -3.591157198, -0.000001490116119, 1.428570986, -4.166670322,
0.00000264909545, -34.16666412, -0.000001051846652, 26.66666985,
26.66666985, 9.375002861, 2.499998569, 6.34920454, 0.000002235174179,
-0.7042223215, -11.11110687, 15.00000286, 1.304349899, -0.000001490116119,
6.217013359, 11.11111546, 25.00000381, 0.9316761494, -0.000003973642833,
-15.71428394, 17.20000076, -0.000001288749104, 4.347826004, 14.28571033,
13.04347801, 4.285716057, 43.20000076, 1.99999845, 10.16949081,
2.499998569, -4.000001431, -0.1834827513, 11.99999809, -1.666670561,
95.45454407, -12.49999809, 25.7142849, -0.5, 18.75000191, -0.000001490116119,
-17.50000191, -9.999998093, 44.11764526, 15.00000286, 19.99999809,
0.000002235174179, 35.99999619, 10.62499809, 76.66667175, 6.666662216,
-0.3703703582, -10.00000095, -100, 146.1538544, 65.21739197,
-11.42856979, 14.99999809, -5.000003815, -11.42856979, 1.625,
6.785714149, NA, 3.492063522, -3.684209347, -2.5, 10, -1.420456648,
1.142857194, -12.49999809, -1.041664481, -0.000003973642833,
-14.2857132, 39.99999619, 36.66666031, -0.3448275924, -15.51723862,
-12.06896305, -18.2857151, 0.555555582, -5.434782505, 590, -6.666670322,
0.000002235174179, 1.818179607, 36.66666031, -6.666666508, 0.000003667978262,
-10.00000095, 20.83333588, -20.40816498, -2.916666746, -29.1970787,
-0.000002167441608, -10, -18.80635834, -100, 8.333335876, -3.5,
10.29411125, 2.097560883, -6.666670322, 7.272725105, 0.7317096591,
19.99999619, 81.25000763, 45.00000381, -20, -11.1111145, -0.000003973642833,
-7.500001431, -0.000003973642833, -1.250001431, -14.28571129,
49.99999619, -10.00000095, -5.882353783, NA, 23.33332825, 19.99999809,
18.33332825, -13.33333683, 34.99999619, -34, -19.71014595, -32.33333206,
-21.4285717, -20.00000191, -100, 0.1388915479, 7.499998569, -20.00000191,
-0.2399999946, 257.1428528, -16, 54, NA, -4.347824097, -100,
6, 1, 4.999995708, -8, 8.301886559, 3.511450291, 25, 16, -1.461133838,
-1.694915295, 1, 17.64705849, 3.376623392, 24.99999428, 3.255813837,
34, 0.00000454130668, -3.333333254, 10.33333302, 1.666666627,
16.231884, 9, 1.829268336, 3, 11.66666698, 4.888888836, 14.25,
3.5, 3.5, -4.411764622, 0.200000003, 1.829268336, 53.96659851,
9.665427208, 5, -1.586715817, 2, 1.111111164, 4.999995708, -10,
5, -4.545456409, NA, 7.894738197, 5.454545498, 1, 11.17647076,
25.00000191), OfferTo1stClose = c(8, -7.272729397, 9.230772972,
7.999995708, -21.05262947, -3.508773565, -2.777781725, 0.000002235174179,
3.571430445, -3.867400169, -0.000001490116119, 1.428570986, -6.666670322,
-1.666664004, -35.83333206, -3.308824539, 13.33333588, 26.66666985,
10.93750286, -0.000001490116119, 6.34920454, -9.999998093, -0.3521096706,
11.11111546, 5.000002384, -0.4347805381, -2.500001431, 3.519066334,
11.11111546, 27.22222519, 4.34782505, -7.407411098, -17.1428566,
15.39999962, 4.05405283, -0.0000001943629684, 7.142853737, 13.04347801,
2.857144594, 43.20000076, 3.999998569, 10.16949081, -7.500001431,
3.999998569, -0.5504552126, 19.99999809, -1.666670561, 170.4545441,
-14.99999809, 31.4285717, -0.5, 18.75000191, -20.00000191, -17.50000191,
0.000002235174179, 44.11764526, 12.50000286, 15.99999809, 3.333335638,
35.99999619, 10.62499809, 123.3333359, 13.3333292, -1.481481433,
-10.00000095, -100, 138.4615479, 47.82608414, -12.85714149, 32.49999619,
-13.33333683, -24.2857132, 1.75, -0.3571428657, NA, 3.93650794,
-7.894735813, -7, 20, -0.9375021458, 1.714285731, -8.333331108,
-1.041664481, 3.333329201, -19.99999809, 33.33332825, 33.33332825,
-0.06896551698, -16.3793087, -16.3793087, -18.2857151, 2.666666746,
2.173913002, 590, -6.666670322, -16.66666412, 2.727270603, 44.99999237,
-10.66666698, 1.923080683, -12.50000095, 16.66666985, -22.44898033,
-4.166666508, -39.85401535, -3.636365652, -12, -16.8959198, -100,
0.000002235174179, -3.5, 13.97058201, 2.707317114, -8.066670418,
5.454543114, 0.4878072143, 19.99999619, 87.50000763, 45.7142868,
-25.66666603, -5.555559158, 16.66666222, -2.500001431, 3.333329201,
-0.000001490116119, -14.28571129, 49.99999619, -10.00000095,
-5.882353783, NA, 39.99999619, 19.99999809, 13.3333292, -10.00000381,
65, -26, -19.71014595, -31.66666603, -21.4285717, -20.00000191,
-100, -0.1388862431, 11.24999809, -20.00000191, -1.679999948,
228.5714264, -22.66666603, 42, NA, -7.826085091, -100, 6.666666508,
0, 4.999995708, -8, 8.301886559, 3.969465733, 26, 16, -5.084745884,
1.322033882, 1.5, 17.64705849, 2.077922106, 24.99999428, 3.255813837,
43, 0.00000454130668, -4.166666508, 10.33333302, 1.333333373,
18.69565201, 9, 1.829268336, 3, 11.66666698, 3.111111164, 15,
3.5, 3.5, -4.411764622, 0.6000000238, 50.60975647, 53.96659851,
37.54646683, 0, -0.1476014704, 3, 1.296296239, 4.999995708, -11.11111069,
5, -0.000002167441608, NA, 7.894738197, 4.181818008, 0.5, 10.88235283,
25.00000191)), row.names = c(NA, -199L), vars = "Country", drop = TRUE, indices = list(
0:61, 62:154, 155:198), group_sizes = c(62L, 93L, 44L), biggest_group_size = 93L, labels = structure(list(
Country = c("AU", "CA", "GB")), row.names = c(NA, -3L), class = "data.frame", vars = "Country", drop = TRUE, indices = list(
0:61, 62:154, 155:198), group_sizes = c(62L, 93L, 44L), biggest_group_size = 93L, labels = structure(list(
Country = c("AU", "CA", "GB")), row.names = c(NA, -3L), class = "data.frame", vars = "Country", drop = TRUE)), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"))









share|improve this question
























  • df %>% group_by(Country) %>% mutate_at(vars(OfferPrice), funs(Trim(x = ., trim = 0.1, na.rm = TRUE)))) ?
    – Andre Elrico
    Nov 19 at 15:39










  • Or just df %>% group_by(Country) %>% mutate(OfferPrice = Trim(OfferPrice, trim=0.1, na.rm=TRUE)), since it's only one column.
    – r2evans
    Nov 19 at 15:41















up vote
0
down vote

favorite












I am trying to apply a Trim function from the DescTools package to a data frame in R using the dplyr package.



What I have so far is the following:



x <- df %>%
group_by(Country) %>%
mutate_all(OfferPrice, Trim(trim = 0.1, na.rm = TRUE))


Which returns the following error:



Error in Trim(trim = 0.1, na.rm = TRUE) : 
argument "x" is missing, with no default


I know its a problem with the characteristics inside the Trim() part of the mutate but I cannot seem to apply this function inside dplyr.



The function trims the top and bottom 10% of the observations, hopefully removing any extreme values.



Data:



df <- structure(list(Country = c("AU", "AU", "AU", "AU", "AU", "AU", 
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB"), OfferPrice = c(0.25, 0.55,
0.065, 0.075, 0.019, 0.0114, 0.18, 0.015, 2.8, 3.62, 0.025, 0.07,
0.6, 0.9, 0.12, 2.72, 0.015, 0.015, 0.32, 0.2, 0.063, 0.01, 1.42,
0.0045, 0.02, 1.15, 0.2, 17.05, 0.009, 1.8, 3.22, 0.135, 0.35,
5, 0.37, 0.023, 0.014, 0.023, 0.35, 1.25, 0.05, 0.059, 0.2, 0.025,
5.45, 0.05, 0.3, 0.22, 0.04, 0.035, 2, 0.32, 0.2, 0.2, 0.02,
0.34, 0.04, 0.025, 0.03, 0.0125, 1.6, 0.03, 0.15, 13.5, 0.1,
0.3, 0.13, 0.115, 0.35, 0.2, 0.6, 0.7, 8, 14, 25, 15.75, 3.8,
2, 0.5, 35.2, 1.75, 0.12, 0.48, 0.15, 0.7, 0.075, 0.15, 14.5,
0.29, 0.58, 1.75, 9, 11.5, 0.5, 0.075, 0.12, 1.1, 0.6, 0.75,
0.26, 0.2, 0.12, 0.49, 12, 6.85, 0.55, 0.25, 1.6, 0.36, 0.06,
2, 0.272, 41, 0.15, 1.1, 4.1, 0.6, 0.08, 1.4, 3, 0.09, 0.15,
0.2, 0.3, 0.8, 0.21, 0.1, 0.05, 0.17, 0.1, 0.15, 0.05, 0.3, 0.6,
0.2, 0.5, 3.45, 3, 0.07, 0.1, 0.3, 7.2, 0.4, 0.1, 12.5, 0.07,
0.375, 0.25, 0.3, 1.15, 0.2, 3, 1, 0.3, 0.25, 530, 262, 20, 37.5,
3422, 295, 100, 0.085, 1925, 0.3, 107.5, 10, 2.1, 3, 15, 300,
690, 50, 410, 100, 120, 225, 40, 100, 100, 51, 10, 82, 9.58,
269, 0.5, 271, 100, 108, 0.3, 4.5, 0.5, 0.55, 50, 0.95, 275,
100, 170, 0.7), OfferTo1stOpen = c(18, -2.727274895, 9.230772972,
6.666662216, -15.78947067, 5.263155937, -2.777781725, 13.33333588,
5.000001907, -3.591157198, -0.000001490116119, 1.428570986, -4.166670322,
0.00000264909545, -34.16666412, -0.000001051846652, 26.66666985,
26.66666985, 9.375002861, 2.499998569, 6.34920454, 0.000002235174179,
-0.7042223215, -11.11110687, 15.00000286, 1.304349899, -0.000001490116119,
6.217013359, 11.11111546, 25.00000381, 0.9316761494, -0.000003973642833,
-15.71428394, 17.20000076, -0.000001288749104, 4.347826004, 14.28571033,
13.04347801, 4.285716057, 43.20000076, 1.99999845, 10.16949081,
2.499998569, -4.000001431, -0.1834827513, 11.99999809, -1.666670561,
95.45454407, -12.49999809, 25.7142849, -0.5, 18.75000191, -0.000001490116119,
-17.50000191, -9.999998093, 44.11764526, 15.00000286, 19.99999809,
0.000002235174179, 35.99999619, 10.62499809, 76.66667175, 6.666662216,
-0.3703703582, -10.00000095, -100, 146.1538544, 65.21739197,
-11.42856979, 14.99999809, -5.000003815, -11.42856979, 1.625,
6.785714149, NA, 3.492063522, -3.684209347, -2.5, 10, -1.420456648,
1.142857194, -12.49999809, -1.041664481, -0.000003973642833,
-14.2857132, 39.99999619, 36.66666031, -0.3448275924, -15.51723862,
-12.06896305, -18.2857151, 0.555555582, -5.434782505, 590, -6.666670322,
0.000002235174179, 1.818179607, 36.66666031, -6.666666508, 0.000003667978262,
-10.00000095, 20.83333588, -20.40816498, -2.916666746, -29.1970787,
-0.000002167441608, -10, -18.80635834, -100, 8.333335876, -3.5,
10.29411125, 2.097560883, -6.666670322, 7.272725105, 0.7317096591,
19.99999619, 81.25000763, 45.00000381, -20, -11.1111145, -0.000003973642833,
-7.500001431, -0.000003973642833, -1.250001431, -14.28571129,
49.99999619, -10.00000095, -5.882353783, NA, 23.33332825, 19.99999809,
18.33332825, -13.33333683, 34.99999619, -34, -19.71014595, -32.33333206,
-21.4285717, -20.00000191, -100, 0.1388915479, 7.499998569, -20.00000191,
-0.2399999946, 257.1428528, -16, 54, NA, -4.347824097, -100,
6, 1, 4.999995708, -8, 8.301886559, 3.511450291, 25, 16, -1.461133838,
-1.694915295, 1, 17.64705849, 3.376623392, 24.99999428, 3.255813837,
34, 0.00000454130668, -3.333333254, 10.33333302, 1.666666627,
16.231884, 9, 1.829268336, 3, 11.66666698, 4.888888836, 14.25,
3.5, 3.5, -4.411764622, 0.200000003, 1.829268336, 53.96659851,
9.665427208, 5, -1.586715817, 2, 1.111111164, 4.999995708, -10,
5, -4.545456409, NA, 7.894738197, 5.454545498, 1, 11.17647076,
25.00000191), OfferTo1stClose = c(8, -7.272729397, 9.230772972,
7.999995708, -21.05262947, -3.508773565, -2.777781725, 0.000002235174179,
3.571430445, -3.867400169, -0.000001490116119, 1.428570986, -6.666670322,
-1.666664004, -35.83333206, -3.308824539, 13.33333588, 26.66666985,
10.93750286, -0.000001490116119, 6.34920454, -9.999998093, -0.3521096706,
11.11111546, 5.000002384, -0.4347805381, -2.500001431, 3.519066334,
11.11111546, 27.22222519, 4.34782505, -7.407411098, -17.1428566,
15.39999962, 4.05405283, -0.0000001943629684, 7.142853737, 13.04347801,
2.857144594, 43.20000076, 3.999998569, 10.16949081, -7.500001431,
3.999998569, -0.5504552126, 19.99999809, -1.666670561, 170.4545441,
-14.99999809, 31.4285717, -0.5, 18.75000191, -20.00000191, -17.50000191,
0.000002235174179, 44.11764526, 12.50000286, 15.99999809, 3.333335638,
35.99999619, 10.62499809, 123.3333359, 13.3333292, -1.481481433,
-10.00000095, -100, 138.4615479, 47.82608414, -12.85714149, 32.49999619,
-13.33333683, -24.2857132, 1.75, -0.3571428657, NA, 3.93650794,
-7.894735813, -7, 20, -0.9375021458, 1.714285731, -8.333331108,
-1.041664481, 3.333329201, -19.99999809, 33.33332825, 33.33332825,
-0.06896551698, -16.3793087, -16.3793087, -18.2857151, 2.666666746,
2.173913002, 590, -6.666670322, -16.66666412, 2.727270603, 44.99999237,
-10.66666698, 1.923080683, -12.50000095, 16.66666985, -22.44898033,
-4.166666508, -39.85401535, -3.636365652, -12, -16.8959198, -100,
0.000002235174179, -3.5, 13.97058201, 2.707317114, -8.066670418,
5.454543114, 0.4878072143, 19.99999619, 87.50000763, 45.7142868,
-25.66666603, -5.555559158, 16.66666222, -2.500001431, 3.333329201,
-0.000001490116119, -14.28571129, 49.99999619, -10.00000095,
-5.882353783, NA, 39.99999619, 19.99999809, 13.3333292, -10.00000381,
65, -26, -19.71014595, -31.66666603, -21.4285717, -20.00000191,
-100, -0.1388862431, 11.24999809, -20.00000191, -1.679999948,
228.5714264, -22.66666603, 42, NA, -7.826085091, -100, 6.666666508,
0, 4.999995708, -8, 8.301886559, 3.969465733, 26, 16, -5.084745884,
1.322033882, 1.5, 17.64705849, 2.077922106, 24.99999428, 3.255813837,
43, 0.00000454130668, -4.166666508, 10.33333302, 1.333333373,
18.69565201, 9, 1.829268336, 3, 11.66666698, 3.111111164, 15,
3.5, 3.5, -4.411764622, 0.6000000238, 50.60975647, 53.96659851,
37.54646683, 0, -0.1476014704, 3, 1.296296239, 4.999995708, -11.11111069,
5, -0.000002167441608, NA, 7.894738197, 4.181818008, 0.5, 10.88235283,
25.00000191)), row.names = c(NA, -199L), vars = "Country", drop = TRUE, indices = list(
0:61, 62:154, 155:198), group_sizes = c(62L, 93L, 44L), biggest_group_size = 93L, labels = structure(list(
Country = c("AU", "CA", "GB")), row.names = c(NA, -3L), class = "data.frame", vars = "Country", drop = TRUE, indices = list(
0:61, 62:154, 155:198), group_sizes = c(62L, 93L, 44L), biggest_group_size = 93L, labels = structure(list(
Country = c("AU", "CA", "GB")), row.names = c(NA, -3L), class = "data.frame", vars = "Country", drop = TRUE)), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"))









share|improve this question
























  • df %>% group_by(Country) %>% mutate_at(vars(OfferPrice), funs(Trim(x = ., trim = 0.1, na.rm = TRUE)))) ?
    – Andre Elrico
    Nov 19 at 15:39










  • Or just df %>% group_by(Country) %>% mutate(OfferPrice = Trim(OfferPrice, trim=0.1, na.rm=TRUE)), since it's only one column.
    – r2evans
    Nov 19 at 15:41













up vote
0
down vote

favorite









up vote
0
down vote

favorite











I am trying to apply a Trim function from the DescTools package to a data frame in R using the dplyr package.



What I have so far is the following:



x <- df %>%
group_by(Country) %>%
mutate_all(OfferPrice, Trim(trim = 0.1, na.rm = TRUE))


Which returns the following error:



Error in Trim(trim = 0.1, na.rm = TRUE) : 
argument "x" is missing, with no default


I know its a problem with the characteristics inside the Trim() part of the mutate but I cannot seem to apply this function inside dplyr.



The function trims the top and bottom 10% of the observations, hopefully removing any extreme values.



Data:



df <- structure(list(Country = c("AU", "AU", "AU", "AU", "AU", "AU", 
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB"), OfferPrice = c(0.25, 0.55,
0.065, 0.075, 0.019, 0.0114, 0.18, 0.015, 2.8, 3.62, 0.025, 0.07,
0.6, 0.9, 0.12, 2.72, 0.015, 0.015, 0.32, 0.2, 0.063, 0.01, 1.42,
0.0045, 0.02, 1.15, 0.2, 17.05, 0.009, 1.8, 3.22, 0.135, 0.35,
5, 0.37, 0.023, 0.014, 0.023, 0.35, 1.25, 0.05, 0.059, 0.2, 0.025,
5.45, 0.05, 0.3, 0.22, 0.04, 0.035, 2, 0.32, 0.2, 0.2, 0.02,
0.34, 0.04, 0.025, 0.03, 0.0125, 1.6, 0.03, 0.15, 13.5, 0.1,
0.3, 0.13, 0.115, 0.35, 0.2, 0.6, 0.7, 8, 14, 25, 15.75, 3.8,
2, 0.5, 35.2, 1.75, 0.12, 0.48, 0.15, 0.7, 0.075, 0.15, 14.5,
0.29, 0.58, 1.75, 9, 11.5, 0.5, 0.075, 0.12, 1.1, 0.6, 0.75,
0.26, 0.2, 0.12, 0.49, 12, 6.85, 0.55, 0.25, 1.6, 0.36, 0.06,
2, 0.272, 41, 0.15, 1.1, 4.1, 0.6, 0.08, 1.4, 3, 0.09, 0.15,
0.2, 0.3, 0.8, 0.21, 0.1, 0.05, 0.17, 0.1, 0.15, 0.05, 0.3, 0.6,
0.2, 0.5, 3.45, 3, 0.07, 0.1, 0.3, 7.2, 0.4, 0.1, 12.5, 0.07,
0.375, 0.25, 0.3, 1.15, 0.2, 3, 1, 0.3, 0.25, 530, 262, 20, 37.5,
3422, 295, 100, 0.085, 1925, 0.3, 107.5, 10, 2.1, 3, 15, 300,
690, 50, 410, 100, 120, 225, 40, 100, 100, 51, 10, 82, 9.58,
269, 0.5, 271, 100, 108, 0.3, 4.5, 0.5, 0.55, 50, 0.95, 275,
100, 170, 0.7), OfferTo1stOpen = c(18, -2.727274895, 9.230772972,
6.666662216, -15.78947067, 5.263155937, -2.777781725, 13.33333588,
5.000001907, -3.591157198, -0.000001490116119, 1.428570986, -4.166670322,
0.00000264909545, -34.16666412, -0.000001051846652, 26.66666985,
26.66666985, 9.375002861, 2.499998569, 6.34920454, 0.000002235174179,
-0.7042223215, -11.11110687, 15.00000286, 1.304349899, -0.000001490116119,
6.217013359, 11.11111546, 25.00000381, 0.9316761494, -0.000003973642833,
-15.71428394, 17.20000076, -0.000001288749104, 4.347826004, 14.28571033,
13.04347801, 4.285716057, 43.20000076, 1.99999845, 10.16949081,
2.499998569, -4.000001431, -0.1834827513, 11.99999809, -1.666670561,
95.45454407, -12.49999809, 25.7142849, -0.5, 18.75000191, -0.000001490116119,
-17.50000191, -9.999998093, 44.11764526, 15.00000286, 19.99999809,
0.000002235174179, 35.99999619, 10.62499809, 76.66667175, 6.666662216,
-0.3703703582, -10.00000095, -100, 146.1538544, 65.21739197,
-11.42856979, 14.99999809, -5.000003815, -11.42856979, 1.625,
6.785714149, NA, 3.492063522, -3.684209347, -2.5, 10, -1.420456648,
1.142857194, -12.49999809, -1.041664481, -0.000003973642833,
-14.2857132, 39.99999619, 36.66666031, -0.3448275924, -15.51723862,
-12.06896305, -18.2857151, 0.555555582, -5.434782505, 590, -6.666670322,
0.000002235174179, 1.818179607, 36.66666031, -6.666666508, 0.000003667978262,
-10.00000095, 20.83333588, -20.40816498, -2.916666746, -29.1970787,
-0.000002167441608, -10, -18.80635834, -100, 8.333335876, -3.5,
10.29411125, 2.097560883, -6.666670322, 7.272725105, 0.7317096591,
19.99999619, 81.25000763, 45.00000381, -20, -11.1111145, -0.000003973642833,
-7.500001431, -0.000003973642833, -1.250001431, -14.28571129,
49.99999619, -10.00000095, -5.882353783, NA, 23.33332825, 19.99999809,
18.33332825, -13.33333683, 34.99999619, -34, -19.71014595, -32.33333206,
-21.4285717, -20.00000191, -100, 0.1388915479, 7.499998569, -20.00000191,
-0.2399999946, 257.1428528, -16, 54, NA, -4.347824097, -100,
6, 1, 4.999995708, -8, 8.301886559, 3.511450291, 25, 16, -1.461133838,
-1.694915295, 1, 17.64705849, 3.376623392, 24.99999428, 3.255813837,
34, 0.00000454130668, -3.333333254, 10.33333302, 1.666666627,
16.231884, 9, 1.829268336, 3, 11.66666698, 4.888888836, 14.25,
3.5, 3.5, -4.411764622, 0.200000003, 1.829268336, 53.96659851,
9.665427208, 5, -1.586715817, 2, 1.111111164, 4.999995708, -10,
5, -4.545456409, NA, 7.894738197, 5.454545498, 1, 11.17647076,
25.00000191), OfferTo1stClose = c(8, -7.272729397, 9.230772972,
7.999995708, -21.05262947, -3.508773565, -2.777781725, 0.000002235174179,
3.571430445, -3.867400169, -0.000001490116119, 1.428570986, -6.666670322,
-1.666664004, -35.83333206, -3.308824539, 13.33333588, 26.66666985,
10.93750286, -0.000001490116119, 6.34920454, -9.999998093, -0.3521096706,
11.11111546, 5.000002384, -0.4347805381, -2.500001431, 3.519066334,
11.11111546, 27.22222519, 4.34782505, -7.407411098, -17.1428566,
15.39999962, 4.05405283, -0.0000001943629684, 7.142853737, 13.04347801,
2.857144594, 43.20000076, 3.999998569, 10.16949081, -7.500001431,
3.999998569, -0.5504552126, 19.99999809, -1.666670561, 170.4545441,
-14.99999809, 31.4285717, -0.5, 18.75000191, -20.00000191, -17.50000191,
0.000002235174179, 44.11764526, 12.50000286, 15.99999809, 3.333335638,
35.99999619, 10.62499809, 123.3333359, 13.3333292, -1.481481433,
-10.00000095, -100, 138.4615479, 47.82608414, -12.85714149, 32.49999619,
-13.33333683, -24.2857132, 1.75, -0.3571428657, NA, 3.93650794,
-7.894735813, -7, 20, -0.9375021458, 1.714285731, -8.333331108,
-1.041664481, 3.333329201, -19.99999809, 33.33332825, 33.33332825,
-0.06896551698, -16.3793087, -16.3793087, -18.2857151, 2.666666746,
2.173913002, 590, -6.666670322, -16.66666412, 2.727270603, 44.99999237,
-10.66666698, 1.923080683, -12.50000095, 16.66666985, -22.44898033,
-4.166666508, -39.85401535, -3.636365652, -12, -16.8959198, -100,
0.000002235174179, -3.5, 13.97058201, 2.707317114, -8.066670418,
5.454543114, 0.4878072143, 19.99999619, 87.50000763, 45.7142868,
-25.66666603, -5.555559158, 16.66666222, -2.500001431, 3.333329201,
-0.000001490116119, -14.28571129, 49.99999619, -10.00000095,
-5.882353783, NA, 39.99999619, 19.99999809, 13.3333292, -10.00000381,
65, -26, -19.71014595, -31.66666603, -21.4285717, -20.00000191,
-100, -0.1388862431, 11.24999809, -20.00000191, -1.679999948,
228.5714264, -22.66666603, 42, NA, -7.826085091, -100, 6.666666508,
0, 4.999995708, -8, 8.301886559, 3.969465733, 26, 16, -5.084745884,
1.322033882, 1.5, 17.64705849, 2.077922106, 24.99999428, 3.255813837,
43, 0.00000454130668, -4.166666508, 10.33333302, 1.333333373,
18.69565201, 9, 1.829268336, 3, 11.66666698, 3.111111164, 15,
3.5, 3.5, -4.411764622, 0.6000000238, 50.60975647, 53.96659851,
37.54646683, 0, -0.1476014704, 3, 1.296296239, 4.999995708, -11.11111069,
5, -0.000002167441608, NA, 7.894738197, 4.181818008, 0.5, 10.88235283,
25.00000191)), row.names = c(NA, -199L), vars = "Country", drop = TRUE, indices = list(
0:61, 62:154, 155:198), group_sizes = c(62L, 93L, 44L), biggest_group_size = 93L, labels = structure(list(
Country = c("AU", "CA", "GB")), row.names = c(NA, -3L), class = "data.frame", vars = "Country", drop = TRUE, indices = list(
0:61, 62:154, 155:198), group_sizes = c(62L, 93L, 44L), biggest_group_size = 93L, labels = structure(list(
Country = c("AU", "CA", "GB")), row.names = c(NA, -3L), class = "data.frame", vars = "Country", drop = TRUE)), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"))









share|improve this question















I am trying to apply a Trim function from the DescTools package to a data frame in R using the dplyr package.



What I have so far is the following:



x <- df %>%
group_by(Country) %>%
mutate_all(OfferPrice, Trim(trim = 0.1, na.rm = TRUE))


Which returns the following error:



Error in Trim(trim = 0.1, na.rm = TRUE) : 
argument "x" is missing, with no default


I know its a problem with the characteristics inside the Trim() part of the mutate but I cannot seem to apply this function inside dplyr.



The function trims the top and bottom 10% of the observations, hopefully removing any extreme values.



Data:



df <- structure(list(Country = c("AU", "AU", "AU", "AU", "AU", "AU", 
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU", "AU",
"AU", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA",
"CA", "CA", "CA", "CA", "CA", "CA", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB", "GB",
"GB", "GB", "GB", "GB", "GB", "GB"), OfferPrice = c(0.25, 0.55,
0.065, 0.075, 0.019, 0.0114, 0.18, 0.015, 2.8, 3.62, 0.025, 0.07,
0.6, 0.9, 0.12, 2.72, 0.015, 0.015, 0.32, 0.2, 0.063, 0.01, 1.42,
0.0045, 0.02, 1.15, 0.2, 17.05, 0.009, 1.8, 3.22, 0.135, 0.35,
5, 0.37, 0.023, 0.014, 0.023, 0.35, 1.25, 0.05, 0.059, 0.2, 0.025,
5.45, 0.05, 0.3, 0.22, 0.04, 0.035, 2, 0.32, 0.2, 0.2, 0.02,
0.34, 0.04, 0.025, 0.03, 0.0125, 1.6, 0.03, 0.15, 13.5, 0.1,
0.3, 0.13, 0.115, 0.35, 0.2, 0.6, 0.7, 8, 14, 25, 15.75, 3.8,
2, 0.5, 35.2, 1.75, 0.12, 0.48, 0.15, 0.7, 0.075, 0.15, 14.5,
0.29, 0.58, 1.75, 9, 11.5, 0.5, 0.075, 0.12, 1.1, 0.6, 0.75,
0.26, 0.2, 0.12, 0.49, 12, 6.85, 0.55, 0.25, 1.6, 0.36, 0.06,
2, 0.272, 41, 0.15, 1.1, 4.1, 0.6, 0.08, 1.4, 3, 0.09, 0.15,
0.2, 0.3, 0.8, 0.21, 0.1, 0.05, 0.17, 0.1, 0.15, 0.05, 0.3, 0.6,
0.2, 0.5, 3.45, 3, 0.07, 0.1, 0.3, 7.2, 0.4, 0.1, 12.5, 0.07,
0.375, 0.25, 0.3, 1.15, 0.2, 3, 1, 0.3, 0.25, 530, 262, 20, 37.5,
3422, 295, 100, 0.085, 1925, 0.3, 107.5, 10, 2.1, 3, 15, 300,
690, 50, 410, 100, 120, 225, 40, 100, 100, 51, 10, 82, 9.58,
269, 0.5, 271, 100, 108, 0.3, 4.5, 0.5, 0.55, 50, 0.95, 275,
100, 170, 0.7), OfferTo1stOpen = c(18, -2.727274895, 9.230772972,
6.666662216, -15.78947067, 5.263155937, -2.777781725, 13.33333588,
5.000001907, -3.591157198, -0.000001490116119, 1.428570986, -4.166670322,
0.00000264909545, -34.16666412, -0.000001051846652, 26.66666985,
26.66666985, 9.375002861, 2.499998569, 6.34920454, 0.000002235174179,
-0.7042223215, -11.11110687, 15.00000286, 1.304349899, -0.000001490116119,
6.217013359, 11.11111546, 25.00000381, 0.9316761494, -0.000003973642833,
-15.71428394, 17.20000076, -0.000001288749104, 4.347826004, 14.28571033,
13.04347801, 4.285716057, 43.20000076, 1.99999845, 10.16949081,
2.499998569, -4.000001431, -0.1834827513, 11.99999809, -1.666670561,
95.45454407, -12.49999809, 25.7142849, -0.5, 18.75000191, -0.000001490116119,
-17.50000191, -9.999998093, 44.11764526, 15.00000286, 19.99999809,
0.000002235174179, 35.99999619, 10.62499809, 76.66667175, 6.666662216,
-0.3703703582, -10.00000095, -100, 146.1538544, 65.21739197,
-11.42856979, 14.99999809, -5.000003815, -11.42856979, 1.625,
6.785714149, NA, 3.492063522, -3.684209347, -2.5, 10, -1.420456648,
1.142857194, -12.49999809, -1.041664481, -0.000003973642833,
-14.2857132, 39.99999619, 36.66666031, -0.3448275924, -15.51723862,
-12.06896305, -18.2857151, 0.555555582, -5.434782505, 590, -6.666670322,
0.000002235174179, 1.818179607, 36.66666031, -6.666666508, 0.000003667978262,
-10.00000095, 20.83333588, -20.40816498, -2.916666746, -29.1970787,
-0.000002167441608, -10, -18.80635834, -100, 8.333335876, -3.5,
10.29411125, 2.097560883, -6.666670322, 7.272725105, 0.7317096591,
19.99999619, 81.25000763, 45.00000381, -20, -11.1111145, -0.000003973642833,
-7.500001431, -0.000003973642833, -1.250001431, -14.28571129,
49.99999619, -10.00000095, -5.882353783, NA, 23.33332825, 19.99999809,
18.33332825, -13.33333683, 34.99999619, -34, -19.71014595, -32.33333206,
-21.4285717, -20.00000191, -100, 0.1388915479, 7.499998569, -20.00000191,
-0.2399999946, 257.1428528, -16, 54, NA, -4.347824097, -100,
6, 1, 4.999995708, -8, 8.301886559, 3.511450291, 25, 16, -1.461133838,
-1.694915295, 1, 17.64705849, 3.376623392, 24.99999428, 3.255813837,
34, 0.00000454130668, -3.333333254, 10.33333302, 1.666666627,
16.231884, 9, 1.829268336, 3, 11.66666698, 4.888888836, 14.25,
3.5, 3.5, -4.411764622, 0.200000003, 1.829268336, 53.96659851,
9.665427208, 5, -1.586715817, 2, 1.111111164, 4.999995708, -10,
5, -4.545456409, NA, 7.894738197, 5.454545498, 1, 11.17647076,
25.00000191), OfferTo1stClose = c(8, -7.272729397, 9.230772972,
7.999995708, -21.05262947, -3.508773565, -2.777781725, 0.000002235174179,
3.571430445, -3.867400169, -0.000001490116119, 1.428570986, -6.666670322,
-1.666664004, -35.83333206, -3.308824539, 13.33333588, 26.66666985,
10.93750286, -0.000001490116119, 6.34920454, -9.999998093, -0.3521096706,
11.11111546, 5.000002384, -0.4347805381, -2.500001431, 3.519066334,
11.11111546, 27.22222519, 4.34782505, -7.407411098, -17.1428566,
15.39999962, 4.05405283, -0.0000001943629684, 7.142853737, 13.04347801,
2.857144594, 43.20000076, 3.999998569, 10.16949081, -7.500001431,
3.999998569, -0.5504552126, 19.99999809, -1.666670561, 170.4545441,
-14.99999809, 31.4285717, -0.5, 18.75000191, -20.00000191, -17.50000191,
0.000002235174179, 44.11764526, 12.50000286, 15.99999809, 3.333335638,
35.99999619, 10.62499809, 123.3333359, 13.3333292, -1.481481433,
-10.00000095, -100, 138.4615479, 47.82608414, -12.85714149, 32.49999619,
-13.33333683, -24.2857132, 1.75, -0.3571428657, NA, 3.93650794,
-7.894735813, -7, 20, -0.9375021458, 1.714285731, -8.333331108,
-1.041664481, 3.333329201, -19.99999809, 33.33332825, 33.33332825,
-0.06896551698, -16.3793087, -16.3793087, -18.2857151, 2.666666746,
2.173913002, 590, -6.666670322, -16.66666412, 2.727270603, 44.99999237,
-10.66666698, 1.923080683, -12.50000095, 16.66666985, -22.44898033,
-4.166666508, -39.85401535, -3.636365652, -12, -16.8959198, -100,
0.000002235174179, -3.5, 13.97058201, 2.707317114, -8.066670418,
5.454543114, 0.4878072143, 19.99999619, 87.50000763, 45.7142868,
-25.66666603, -5.555559158, 16.66666222, -2.500001431, 3.333329201,
-0.000001490116119, -14.28571129, 49.99999619, -10.00000095,
-5.882353783, NA, 39.99999619, 19.99999809, 13.3333292, -10.00000381,
65, -26, -19.71014595, -31.66666603, -21.4285717, -20.00000191,
-100, -0.1388862431, 11.24999809, -20.00000191, -1.679999948,
228.5714264, -22.66666603, 42, NA, -7.826085091, -100, 6.666666508,
0, 4.999995708, -8, 8.301886559, 3.969465733, 26, 16, -5.084745884,
1.322033882, 1.5, 17.64705849, 2.077922106, 24.99999428, 3.255813837,
43, 0.00000454130668, -4.166666508, 10.33333302, 1.333333373,
18.69565201, 9, 1.829268336, 3, 11.66666698, 3.111111164, 15,
3.5, 3.5, -4.411764622, 0.6000000238, 50.60975647, 53.96659851,
37.54646683, 0, -0.1476014704, 3, 1.296296239, 4.999995708, -11.11111069,
5, -0.000002167441608, NA, 7.894738197, 4.181818008, 0.5, 10.88235283,
25.00000191)), row.names = c(NA, -199L), vars = "Country", drop = TRUE, indices = list(
0:61, 62:154, 155:198), group_sizes = c(62L, 93L, 44L), biggest_group_size = 93L, labels = structure(list(
Country = c("AU", "CA", "GB")), row.names = c(NA, -3L), class = "data.frame", vars = "Country", drop = TRUE, indices = list(
0:61, 62:154, 155:198), group_sizes = c(62L, 93L, 44L), biggest_group_size = 93L, labels = structure(list(
Country = c("AU", "CA", "GB")), row.names = c(NA, -3L), class = "data.frame", vars = "Country", drop = TRUE)), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"))






r dplyr






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 19 at 22:07









Stedy

5,067144767




5,067144767










asked Nov 19 at 15:27









user113156

775417




775417












  • df %>% group_by(Country) %>% mutate_at(vars(OfferPrice), funs(Trim(x = ., trim = 0.1, na.rm = TRUE)))) ?
    – Andre Elrico
    Nov 19 at 15:39










  • Or just df %>% group_by(Country) %>% mutate(OfferPrice = Trim(OfferPrice, trim=0.1, na.rm=TRUE)), since it's only one column.
    – r2evans
    Nov 19 at 15:41


















  • df %>% group_by(Country) %>% mutate_at(vars(OfferPrice), funs(Trim(x = ., trim = 0.1, na.rm = TRUE)))) ?
    – Andre Elrico
    Nov 19 at 15:39










  • Or just df %>% group_by(Country) %>% mutate(OfferPrice = Trim(OfferPrice, trim=0.1, na.rm=TRUE)), since it's only one column.
    – r2evans
    Nov 19 at 15:41
















df %>% group_by(Country) %>% mutate_at(vars(OfferPrice), funs(Trim(x = ., trim = 0.1, na.rm = TRUE)))) ?
– Andre Elrico
Nov 19 at 15:39




df %>% group_by(Country) %>% mutate_at(vars(OfferPrice), funs(Trim(x = ., trim = 0.1, na.rm = TRUE)))) ?
– Andre Elrico
Nov 19 at 15:39












Or just df %>% group_by(Country) %>% mutate(OfferPrice = Trim(OfferPrice, trim=0.1, na.rm=TRUE)), since it's only one column.
– r2evans
Nov 19 at 15:41




Or just df %>% group_by(Country) %>% mutate(OfferPrice = Trim(OfferPrice, trim=0.1, na.rm=TRUE)), since it's only one column.
– r2evans
Nov 19 at 15:41












2 Answers
2






active

oldest

votes

















up vote
1
down vote













I think you'll need to do this with do since the action of Trim is to return essentially a subset of observations. Try:



x <- df %>%
group_by(Country) %>%
do(
Trim(.$OfferPrice, trim = 0.1, na.rm = TRUE)
)


You could then use lapply or map inside the do statement to Trim each column of data, but I'm not sure if this is actually what you want. It's unclear since you have not provided any sample data. The attempt to use mutate_all suggests you want to Trim each column of data separately, but this doesn't make sense to me.



EDIT based on your comment you really want to filter the dataframe by the Trimmed column OfferPrice, so



x <- df %>%
group_by(Country) %>%
do(
.[attr(Trim(.$OfferPrice, trim = 0.1, na.rm = TRUE), "trim"), ]
)


See the documentation of Trim for details, specifically




The indices of the trimmed values will be attached as attribute named "trim".







share|improve this answer























  • Thanks! I will try it out now. Regarding the mutate_all ignore that, I just wanted to trim the end points of the OfferPrice column. I will let you know how it works.
    – user113156
    Nov 19 at 15:41










  • @user113156 see my edit based on your actual end goal.
    – mikeck
    Nov 19 at 15:49










  • Did you use a package for the attribute part? I get this: could not find function "attribute"
    – user113156
    Nov 19 at 15:51










  • @user113156 sorry it should be attr, not attribute.
    – mikeck
    Nov 19 at 16:56


















up vote
1
down vote













Assuming that what you want is that for any element of OfferPrice excluded by Trim(OfferPrice, ...) that entire row of df should be dropped, get the trim attribute of the result of Trim(...) and remove those rows using slice doing it all by Country.



library(dplyr)
library(DescTools)

df %>%
group_by(Country) %>%
slice(-attr(Trim(OfferPrice, trim = 0.1, na.rm = TRUE), "trim")) %>%
ungroup


This could also be written:



df %>%
group_by(Country) %>%
slice(OfferPrice %>%
Trim(trim = 0.1, na.rm = TRUE) %>%
attr("trim") %>%
`-`) %>%
ungroup





share|improve this answer























  • Right forgot about slice... this accomplishes the same thing as my answer with do, but using slice is a bit cleaner.
    – mikeck
    Nov 19 at 16:59






  • 1




    @mikek, The code in your EDIT would give the same result if it added a minus.
    – G. Grothendieck
    Nov 19 at 17:05













Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53377818%2fapplying-a-function-inside-a-dplyr-pipe-command%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
1
down vote













I think you'll need to do this with do since the action of Trim is to return essentially a subset of observations. Try:



x <- df %>%
group_by(Country) %>%
do(
Trim(.$OfferPrice, trim = 0.1, na.rm = TRUE)
)


You could then use lapply or map inside the do statement to Trim each column of data, but I'm not sure if this is actually what you want. It's unclear since you have not provided any sample data. The attempt to use mutate_all suggests you want to Trim each column of data separately, but this doesn't make sense to me.



EDIT based on your comment you really want to filter the dataframe by the Trimmed column OfferPrice, so



x <- df %>%
group_by(Country) %>%
do(
.[attr(Trim(.$OfferPrice, trim = 0.1, na.rm = TRUE), "trim"), ]
)


See the documentation of Trim for details, specifically




The indices of the trimmed values will be attached as attribute named "trim".







share|improve this answer























  • Thanks! I will try it out now. Regarding the mutate_all ignore that, I just wanted to trim the end points of the OfferPrice column. I will let you know how it works.
    – user113156
    Nov 19 at 15:41










  • @user113156 see my edit based on your actual end goal.
    – mikeck
    Nov 19 at 15:49










  • Did you use a package for the attribute part? I get this: could not find function "attribute"
    – user113156
    Nov 19 at 15:51










  • @user113156 sorry it should be attr, not attribute.
    – mikeck
    Nov 19 at 16:56















up vote
1
down vote













I think you'll need to do this with do since the action of Trim is to return essentially a subset of observations. Try:



x <- df %>%
group_by(Country) %>%
do(
Trim(.$OfferPrice, trim = 0.1, na.rm = TRUE)
)


You could then use lapply or map inside the do statement to Trim each column of data, but I'm not sure if this is actually what you want. It's unclear since you have not provided any sample data. The attempt to use mutate_all suggests you want to Trim each column of data separately, but this doesn't make sense to me.



EDIT based on your comment you really want to filter the dataframe by the Trimmed column OfferPrice, so



x <- df %>%
group_by(Country) %>%
do(
.[attr(Trim(.$OfferPrice, trim = 0.1, na.rm = TRUE), "trim"), ]
)


See the documentation of Trim for details, specifically




The indices of the trimmed values will be attached as attribute named "trim".







share|improve this answer























  • Thanks! I will try it out now. Regarding the mutate_all ignore that, I just wanted to trim the end points of the OfferPrice column. I will let you know how it works.
    – user113156
    Nov 19 at 15:41










  • @user113156 see my edit based on your actual end goal.
    – mikeck
    Nov 19 at 15:49










  • Did you use a package for the attribute part? I get this: could not find function "attribute"
    – user113156
    Nov 19 at 15:51










  • @user113156 sorry it should be attr, not attribute.
    – mikeck
    Nov 19 at 16:56













up vote
1
down vote










up vote
1
down vote









I think you'll need to do this with do since the action of Trim is to return essentially a subset of observations. Try:



x <- df %>%
group_by(Country) %>%
do(
Trim(.$OfferPrice, trim = 0.1, na.rm = TRUE)
)


You could then use lapply or map inside the do statement to Trim each column of data, but I'm not sure if this is actually what you want. It's unclear since you have not provided any sample data. The attempt to use mutate_all suggests you want to Trim each column of data separately, but this doesn't make sense to me.



EDIT based on your comment you really want to filter the dataframe by the Trimmed column OfferPrice, so



x <- df %>%
group_by(Country) %>%
do(
.[attr(Trim(.$OfferPrice, trim = 0.1, na.rm = TRUE), "trim"), ]
)


See the documentation of Trim for details, specifically




The indices of the trimmed values will be attached as attribute named "trim".







share|improve this answer














I think you'll need to do this with do since the action of Trim is to return essentially a subset of observations. Try:



x <- df %>%
group_by(Country) %>%
do(
Trim(.$OfferPrice, trim = 0.1, na.rm = TRUE)
)


You could then use lapply or map inside the do statement to Trim each column of data, but I'm not sure if this is actually what you want. It's unclear since you have not provided any sample data. The attempt to use mutate_all suggests you want to Trim each column of data separately, but this doesn't make sense to me.



EDIT based on your comment you really want to filter the dataframe by the Trimmed column OfferPrice, so



x <- df %>%
group_by(Country) %>%
do(
.[attr(Trim(.$OfferPrice, trim = 0.1, na.rm = TRUE), "trim"), ]
)


See the documentation of Trim for details, specifically




The indices of the trimmed values will be attached as attribute named "trim".








share|improve this answer














share|improve this answer



share|improve this answer








edited Nov 19 at 21:47

























answered Nov 19 at 15:33









mikeck

1,9621022




1,9621022












  • Thanks! I will try it out now. Regarding the mutate_all ignore that, I just wanted to trim the end points of the OfferPrice column. I will let you know how it works.
    – user113156
    Nov 19 at 15:41










  • @user113156 see my edit based on your actual end goal.
    – mikeck
    Nov 19 at 15:49










  • Did you use a package for the attribute part? I get this: could not find function "attribute"
    – user113156
    Nov 19 at 15:51










  • @user113156 sorry it should be attr, not attribute.
    – mikeck
    Nov 19 at 16:56


















  • Thanks! I will try it out now. Regarding the mutate_all ignore that, I just wanted to trim the end points of the OfferPrice column. I will let you know how it works.
    – user113156
    Nov 19 at 15:41










  • @user113156 see my edit based on your actual end goal.
    – mikeck
    Nov 19 at 15:49










  • Did you use a package for the attribute part? I get this: could not find function "attribute"
    – user113156
    Nov 19 at 15:51










  • @user113156 sorry it should be attr, not attribute.
    – mikeck
    Nov 19 at 16:56
















Thanks! I will try it out now. Regarding the mutate_all ignore that, I just wanted to trim the end points of the OfferPrice column. I will let you know how it works.
– user113156
Nov 19 at 15:41




Thanks! I will try it out now. Regarding the mutate_all ignore that, I just wanted to trim the end points of the OfferPrice column. I will let you know how it works.
– user113156
Nov 19 at 15:41












@user113156 see my edit based on your actual end goal.
– mikeck
Nov 19 at 15:49




@user113156 see my edit based on your actual end goal.
– mikeck
Nov 19 at 15:49












Did you use a package for the attribute part? I get this: could not find function "attribute"
– user113156
Nov 19 at 15:51




Did you use a package for the attribute part? I get this: could not find function "attribute"
– user113156
Nov 19 at 15:51












@user113156 sorry it should be attr, not attribute.
– mikeck
Nov 19 at 16:56




@user113156 sorry it should be attr, not attribute.
– mikeck
Nov 19 at 16:56












up vote
1
down vote













Assuming that what you want is that for any element of OfferPrice excluded by Trim(OfferPrice, ...) that entire row of df should be dropped, get the trim attribute of the result of Trim(...) and remove those rows using slice doing it all by Country.



library(dplyr)
library(DescTools)

df %>%
group_by(Country) %>%
slice(-attr(Trim(OfferPrice, trim = 0.1, na.rm = TRUE), "trim")) %>%
ungroup


This could also be written:



df %>%
group_by(Country) %>%
slice(OfferPrice %>%
Trim(trim = 0.1, na.rm = TRUE) %>%
attr("trim") %>%
`-`) %>%
ungroup





share|improve this answer























  • Right forgot about slice... this accomplishes the same thing as my answer with do, but using slice is a bit cleaner.
    – mikeck
    Nov 19 at 16:59






  • 1




    @mikek, The code in your EDIT would give the same result if it added a minus.
    – G. Grothendieck
    Nov 19 at 17:05

















up vote
1
down vote













Assuming that what you want is that for any element of OfferPrice excluded by Trim(OfferPrice, ...) that entire row of df should be dropped, get the trim attribute of the result of Trim(...) and remove those rows using slice doing it all by Country.



library(dplyr)
library(DescTools)

df %>%
group_by(Country) %>%
slice(-attr(Trim(OfferPrice, trim = 0.1, na.rm = TRUE), "trim")) %>%
ungroup


This could also be written:



df %>%
group_by(Country) %>%
slice(OfferPrice %>%
Trim(trim = 0.1, na.rm = TRUE) %>%
attr("trim") %>%
`-`) %>%
ungroup





share|improve this answer























  • Right forgot about slice... this accomplishes the same thing as my answer with do, but using slice is a bit cleaner.
    – mikeck
    Nov 19 at 16:59






  • 1




    @mikek, The code in your EDIT would give the same result if it added a minus.
    – G. Grothendieck
    Nov 19 at 17:05















up vote
1
down vote










up vote
1
down vote









Assuming that what you want is that for any element of OfferPrice excluded by Trim(OfferPrice, ...) that entire row of df should be dropped, get the trim attribute of the result of Trim(...) and remove those rows using slice doing it all by Country.



library(dplyr)
library(DescTools)

df %>%
group_by(Country) %>%
slice(-attr(Trim(OfferPrice, trim = 0.1, na.rm = TRUE), "trim")) %>%
ungroup


This could also be written:



df %>%
group_by(Country) %>%
slice(OfferPrice %>%
Trim(trim = 0.1, na.rm = TRUE) %>%
attr("trim") %>%
`-`) %>%
ungroup





share|improve this answer














Assuming that what you want is that for any element of OfferPrice excluded by Trim(OfferPrice, ...) that entire row of df should be dropped, get the trim attribute of the result of Trim(...) and remove those rows using slice doing it all by Country.



library(dplyr)
library(DescTools)

df %>%
group_by(Country) %>%
slice(-attr(Trim(OfferPrice, trim = 0.1, na.rm = TRUE), "trim")) %>%
ungroup


This could also be written:



df %>%
group_by(Country) %>%
slice(OfferPrice %>%
Trim(trim = 0.1, na.rm = TRUE) %>%
attr("trim") %>%
`-`) %>%
ungroup






share|improve this answer














share|improve this answer



share|improve this answer








edited Nov 19 at 22:48

























answered Nov 19 at 16:05









G. Grothendieck

143k9125230




143k9125230












  • Right forgot about slice... this accomplishes the same thing as my answer with do, but using slice is a bit cleaner.
    – mikeck
    Nov 19 at 16:59






  • 1




    @mikek, The code in your EDIT would give the same result if it added a minus.
    – G. Grothendieck
    Nov 19 at 17:05




















  • Right forgot about slice... this accomplishes the same thing as my answer with do, but using slice is a bit cleaner.
    – mikeck
    Nov 19 at 16:59






  • 1




    @mikek, The code in your EDIT would give the same result if it added a minus.
    – G. Grothendieck
    Nov 19 at 17:05


















Right forgot about slice... this accomplishes the same thing as my answer with do, but using slice is a bit cleaner.
– mikeck
Nov 19 at 16:59




Right forgot about slice... this accomplishes the same thing as my answer with do, but using slice is a bit cleaner.
– mikeck
Nov 19 at 16:59




1




1




@mikek, The code in your EDIT would give the same result if it added a minus.
– G. Grothendieck
Nov 19 at 17:05






@mikek, The code in your EDIT would give the same result if it added a minus.
– G. Grothendieck
Nov 19 at 17:05




















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53377818%2fapplying-a-function-inside-a-dplyr-pipe-command%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Costa Masnaga

Fotorealismo

Sidney Franklin