Extract data from a pandas series if the values are in a dictionary-like format












0















I try the solution in Extracting dictionary values from a pandas dataframe But it didn't work.



I have a pandas.core.series.Series with the following general format:



0      {'hashtags': , 'symbols': , 'user_mentions...
1 {'hashtags': , 'symbols': , 'user_mentions...
2 {'hashtags': , 'symbols': , 'user_mentions...
3 {'hashtags': , 'symbols': , 'user_mentions...
...


the specific format of each one is similar to the following:



{'hashtags': ,
'symbols': ,
'user_mentions': [{'screen_name': 'jose_m',
'id_str': '132',
'name': 'Jose',
'indices': [0, 10],
'id': 103},
{'screen_name': 'paul',
'id_str': '243403',
'name': 'Jorge',
'indices': [50, 64],
'id': 2423}],
'urls': }


I get that by placing the index zero to the variable entities[0] (Index may change).



I need to extract extract all the screen_name and name inside user_mentions. Thanks :)










share|improve this question



























    0















    I try the solution in Extracting dictionary values from a pandas dataframe But it didn't work.



    I have a pandas.core.series.Series with the following general format:



    0      {'hashtags': , 'symbols': , 'user_mentions...
    1 {'hashtags': , 'symbols': , 'user_mentions...
    2 {'hashtags': , 'symbols': , 'user_mentions...
    3 {'hashtags': , 'symbols': , 'user_mentions...
    ...


    the specific format of each one is similar to the following:



    {'hashtags': ,
    'symbols': ,
    'user_mentions': [{'screen_name': 'jose_m',
    'id_str': '132',
    'name': 'Jose',
    'indices': [0, 10],
    'id': 103},
    {'screen_name': 'paul',
    'id_str': '243403',
    'name': 'Jorge',
    'indices': [50, 64],
    'id': 2423}],
    'urls': }


    I get that by placing the index zero to the variable entities[0] (Index may change).



    I need to extract extract all the screen_name and name inside user_mentions. Thanks :)










    share|improve this question

























      0












      0








      0


      1






      I try the solution in Extracting dictionary values from a pandas dataframe But it didn't work.



      I have a pandas.core.series.Series with the following general format:



      0      {'hashtags': , 'symbols': , 'user_mentions...
      1 {'hashtags': , 'symbols': , 'user_mentions...
      2 {'hashtags': , 'symbols': , 'user_mentions...
      3 {'hashtags': , 'symbols': , 'user_mentions...
      ...


      the specific format of each one is similar to the following:



      {'hashtags': ,
      'symbols': ,
      'user_mentions': [{'screen_name': 'jose_m',
      'id_str': '132',
      'name': 'Jose',
      'indices': [0, 10],
      'id': 103},
      {'screen_name': 'paul',
      'id_str': '243403',
      'name': 'Jorge',
      'indices': [50, 64],
      'id': 2423}],
      'urls': }


      I get that by placing the index zero to the variable entities[0] (Index may change).



      I need to extract extract all the screen_name and name inside user_mentions. Thanks :)










      share|improve this question














      I try the solution in Extracting dictionary values from a pandas dataframe But it didn't work.



      I have a pandas.core.series.Series with the following general format:



      0      {'hashtags': , 'symbols': , 'user_mentions...
      1 {'hashtags': , 'symbols': , 'user_mentions...
      2 {'hashtags': , 'symbols': , 'user_mentions...
      3 {'hashtags': , 'symbols': , 'user_mentions...
      ...


      the specific format of each one is similar to the following:



      {'hashtags': ,
      'symbols': ,
      'user_mentions': [{'screen_name': 'jose_m',
      'id_str': '132',
      'name': 'Jose',
      'indices': [0, 10],
      'id': 103},
      {'screen_name': 'paul',
      'id_str': '243403',
      'name': 'Jorge',
      'indices': [50, 64],
      'id': 2423}],
      'urls': }


      I get that by placing the index zero to the variable entities[0] (Index may change).



      I need to extract extract all the screen_name and name inside user_mentions. Thanks :)







      python pandas






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 23 '18 at 1:48









      Ricardo PrietoRicardo Prieto

      154




      154
























          1 Answer
          1






          active

          oldest

          votes


















          0














          Here is an example with apply, for each entities returns a list with a tuple for each user_mention:



          def find_user_mention(user_mention):
          return (user_mention['screen_name'], user_mention['name'])

          df['entities'].apply(lambda x: [find_user_mention(user_mention) for user_mention in x['user_mentions']])


          Example output with random data:



          0                       [(NunkMasKKs, 🍣 SUSHIPLANERO 🍣)]
          1 [(leobilanski, Leo Bilanski)]
          2 [(romerodiario, El Profe Romero)]
          3 [(HugoYasky, Hugo Yasky)]
          4 [(marianorecalde, Mariano Recalde)]
          5 [(cyngarciaradio, Cynthia García)]





          share|improve this answer
























          • Great! thank you very much

            – Ricardo Prieto
            Nov 23 '18 at 2:50











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53439773%2fextract-data-from-a-pandas-series-if-the-values-are-in-a-dictionary-like-format%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0














          Here is an example with apply, for each entities returns a list with a tuple for each user_mention:



          def find_user_mention(user_mention):
          return (user_mention['screen_name'], user_mention['name'])

          df['entities'].apply(lambda x: [find_user_mention(user_mention) for user_mention in x['user_mentions']])


          Example output with random data:



          0                       [(NunkMasKKs, 🍣 SUSHIPLANERO 🍣)]
          1 [(leobilanski, Leo Bilanski)]
          2 [(romerodiario, El Profe Romero)]
          3 [(HugoYasky, Hugo Yasky)]
          4 [(marianorecalde, Mariano Recalde)]
          5 [(cyngarciaradio, Cynthia García)]





          share|improve this answer
























          • Great! thank you very much

            – Ricardo Prieto
            Nov 23 '18 at 2:50
















          0














          Here is an example with apply, for each entities returns a list with a tuple for each user_mention:



          def find_user_mention(user_mention):
          return (user_mention['screen_name'], user_mention['name'])

          df['entities'].apply(lambda x: [find_user_mention(user_mention) for user_mention in x['user_mentions']])


          Example output with random data:



          0                       [(NunkMasKKs, 🍣 SUSHIPLANERO 🍣)]
          1 [(leobilanski, Leo Bilanski)]
          2 [(romerodiario, El Profe Romero)]
          3 [(HugoYasky, Hugo Yasky)]
          4 [(marianorecalde, Mariano Recalde)]
          5 [(cyngarciaradio, Cynthia García)]





          share|improve this answer
























          • Great! thank you very much

            – Ricardo Prieto
            Nov 23 '18 at 2:50














          0












          0








          0







          Here is an example with apply, for each entities returns a list with a tuple for each user_mention:



          def find_user_mention(user_mention):
          return (user_mention['screen_name'], user_mention['name'])

          df['entities'].apply(lambda x: [find_user_mention(user_mention) for user_mention in x['user_mentions']])


          Example output with random data:



          0                       [(NunkMasKKs, 🍣 SUSHIPLANERO 🍣)]
          1 [(leobilanski, Leo Bilanski)]
          2 [(romerodiario, El Profe Romero)]
          3 [(HugoYasky, Hugo Yasky)]
          4 [(marianorecalde, Mariano Recalde)]
          5 [(cyngarciaradio, Cynthia García)]





          share|improve this answer













          Here is an example with apply, for each entities returns a list with a tuple for each user_mention:



          def find_user_mention(user_mention):
          return (user_mention['screen_name'], user_mention['name'])

          df['entities'].apply(lambda x: [find_user_mention(user_mention) for user_mention in x['user_mentions']])


          Example output with random data:



          0                       [(NunkMasKKs, 🍣 SUSHIPLANERO 🍣)]
          1 [(leobilanski, Leo Bilanski)]
          2 [(romerodiario, El Profe Romero)]
          3 [(HugoYasky, Hugo Yasky)]
          4 [(marianorecalde, Mariano Recalde)]
          5 [(cyngarciaradio, Cynthia García)]






          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Nov 23 '18 at 2:36









          LucasLucas

          2,35211128




          2,35211128













          • Great! thank you very much

            – Ricardo Prieto
            Nov 23 '18 at 2:50



















          • Great! thank you very much

            – Ricardo Prieto
            Nov 23 '18 at 2:50

















          Great! thank you very much

          – Ricardo Prieto
          Nov 23 '18 at 2:50





          Great! thank you very much

          – Ricardo Prieto
          Nov 23 '18 at 2:50




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53439773%2fextract-data-from-a-pandas-series-if-the-values-are-in-a-dictionary-like-format%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Costa Masnaga

          Fotorealismo

          Sidney Franklin