Probably true, but provably unprovable











up vote
22
down vote

favorite
6












I'm wondering if anyone has found, or can find, a sequence of statements $P(n)$ ($n in mathbb{N}$) such that:




  1. Heuristic arguments using probability theory suggest that all the statements $P(n)$ are true.


  2. One can prove, preferably by making the probabilistic arguments rigorous, that infinitely many of the statements $P(n)$ are true.


  3. One can prove that only finitely many of the statements $P(n)$ are provable (say in Peano arithmetic or ZFC).



The goal here would be to find statements that are true 'just because they are probably true', not because we can put our finger on a reason why any individual one must be true.



An example of such a sequence of statements might be 'if $p_n$ is the $n$th prime, there are infinitely many repunit primes in base $p_n$'. However while this example meets condition 1 we seem far from having enough understanding of mathematics to prove 2, and 3 seems hopeless. I think we need a less charismatic sequence of statements that are more carefully crafted to the task at hand.










share|cite|improve this question




















  • 5




    It's not a fixed sequence but you can generate arbitrarily many probably true, ZFC independent statements by stating lower bounds on the Kolmogorov complexity of randomly generated binary strings. You can tune the probability that they're true by choosing the length of the string and the lower bound carefully.
    – James Hanson
    yesterday






  • 2




    What's the difference between "true" and "provable"?
    – YCor
    yesterday






  • 1




    How could you "prove that only finitely many of the statements $P(n)$ are provable" (condition 3) and also "prove that infinitely many of the statements $P(n)$ are true" (condition 2)? Is the latter proof supposed to depend on large cardinals or something?
    – Nik Weaver
    yesterday






  • 1




    @IlyaBogdanov Was Paris–Hamilton a typo for Paris–Harrington?
    – bof
    yesterday






  • 1




    The Parris-Harrington theorem gives an infinite sequence of statements $P(n)$ that are individually provable in Peano arithmetic, for which $forall n P(n)$ is not provable in PA. It also has nothing to do with probabilistic heuristics. So this fails to meet all three criteria I listed.
    – John Baez
    yesterday















up vote
22
down vote

favorite
6












I'm wondering if anyone has found, or can find, a sequence of statements $P(n)$ ($n in mathbb{N}$) such that:




  1. Heuristic arguments using probability theory suggest that all the statements $P(n)$ are true.


  2. One can prove, preferably by making the probabilistic arguments rigorous, that infinitely many of the statements $P(n)$ are true.


  3. One can prove that only finitely many of the statements $P(n)$ are provable (say in Peano arithmetic or ZFC).



The goal here would be to find statements that are true 'just because they are probably true', not because we can put our finger on a reason why any individual one must be true.



An example of such a sequence of statements might be 'if $p_n$ is the $n$th prime, there are infinitely many repunit primes in base $p_n$'. However while this example meets condition 1 we seem far from having enough understanding of mathematics to prove 2, and 3 seems hopeless. I think we need a less charismatic sequence of statements that are more carefully crafted to the task at hand.










share|cite|improve this question




















  • 5




    It's not a fixed sequence but you can generate arbitrarily many probably true, ZFC independent statements by stating lower bounds on the Kolmogorov complexity of randomly generated binary strings. You can tune the probability that they're true by choosing the length of the string and the lower bound carefully.
    – James Hanson
    yesterday






  • 2




    What's the difference between "true" and "provable"?
    – YCor
    yesterday






  • 1




    How could you "prove that only finitely many of the statements $P(n)$ are provable" (condition 3) and also "prove that infinitely many of the statements $P(n)$ are true" (condition 2)? Is the latter proof supposed to depend on large cardinals or something?
    – Nik Weaver
    yesterday






  • 1




    @IlyaBogdanov Was Paris–Hamilton a typo for Paris–Harrington?
    – bof
    yesterday






  • 1




    The Parris-Harrington theorem gives an infinite sequence of statements $P(n)$ that are individually provable in Peano arithmetic, for which $forall n P(n)$ is not provable in PA. It also has nothing to do with probabilistic heuristics. So this fails to meet all three criteria I listed.
    – John Baez
    yesterday













up vote
22
down vote

favorite
6









up vote
22
down vote

favorite
6






6





I'm wondering if anyone has found, or can find, a sequence of statements $P(n)$ ($n in mathbb{N}$) such that:




  1. Heuristic arguments using probability theory suggest that all the statements $P(n)$ are true.


  2. One can prove, preferably by making the probabilistic arguments rigorous, that infinitely many of the statements $P(n)$ are true.


  3. One can prove that only finitely many of the statements $P(n)$ are provable (say in Peano arithmetic or ZFC).



The goal here would be to find statements that are true 'just because they are probably true', not because we can put our finger on a reason why any individual one must be true.



An example of such a sequence of statements might be 'if $p_n$ is the $n$th prime, there are infinitely many repunit primes in base $p_n$'. However while this example meets condition 1 we seem far from having enough understanding of mathematics to prove 2, and 3 seems hopeless. I think we need a less charismatic sequence of statements that are more carefully crafted to the task at hand.










share|cite|improve this question















I'm wondering if anyone has found, or can find, a sequence of statements $P(n)$ ($n in mathbb{N}$) such that:




  1. Heuristic arguments using probability theory suggest that all the statements $P(n)$ are true.


  2. One can prove, preferably by making the probabilistic arguments rigorous, that infinitely many of the statements $P(n)$ are true.


  3. One can prove that only finitely many of the statements $P(n)$ are provable (say in Peano arithmetic or ZFC).



The goal here would be to find statements that are true 'just because they are probably true', not because we can put our finger on a reason why any individual one must be true.



An example of such a sequence of statements might be 'if $p_n$ is the $n$th prime, there are infinitely many repunit primes in base $p_n$'. However while this example meets condition 1 we seem far from having enough understanding of mathematics to prove 2, and 3 seems hopeless. I think we need a less charismatic sequence of statements that are more carefully crafted to the task at hand.







nt.number-theory lo.logic






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday

























asked yesterday









John Baez

8,4524392




8,4524392








  • 5




    It's not a fixed sequence but you can generate arbitrarily many probably true, ZFC independent statements by stating lower bounds on the Kolmogorov complexity of randomly generated binary strings. You can tune the probability that they're true by choosing the length of the string and the lower bound carefully.
    – James Hanson
    yesterday






  • 2




    What's the difference between "true" and "provable"?
    – YCor
    yesterday






  • 1




    How could you "prove that only finitely many of the statements $P(n)$ are provable" (condition 3) and also "prove that infinitely many of the statements $P(n)$ are true" (condition 2)? Is the latter proof supposed to depend on large cardinals or something?
    – Nik Weaver
    yesterday






  • 1




    @IlyaBogdanov Was Paris–Hamilton a typo for Paris–Harrington?
    – bof
    yesterday






  • 1




    The Parris-Harrington theorem gives an infinite sequence of statements $P(n)$ that are individually provable in Peano arithmetic, for which $forall n P(n)$ is not provable in PA. It also has nothing to do with probabilistic heuristics. So this fails to meet all three criteria I listed.
    – John Baez
    yesterday














  • 5




    It's not a fixed sequence but you can generate arbitrarily many probably true, ZFC independent statements by stating lower bounds on the Kolmogorov complexity of randomly generated binary strings. You can tune the probability that they're true by choosing the length of the string and the lower bound carefully.
    – James Hanson
    yesterday






  • 2




    What's the difference between "true" and "provable"?
    – YCor
    yesterday






  • 1




    How could you "prove that only finitely many of the statements $P(n)$ are provable" (condition 3) and also "prove that infinitely many of the statements $P(n)$ are true" (condition 2)? Is the latter proof supposed to depend on large cardinals or something?
    – Nik Weaver
    yesterday






  • 1




    @IlyaBogdanov Was Paris–Hamilton a typo for Paris–Harrington?
    – bof
    yesterday






  • 1




    The Parris-Harrington theorem gives an infinite sequence of statements $P(n)$ that are individually provable in Peano arithmetic, for which $forall n P(n)$ is not provable in PA. It also has nothing to do with probabilistic heuristics. So this fails to meet all three criteria I listed.
    – John Baez
    yesterday








5




5




It's not a fixed sequence but you can generate arbitrarily many probably true, ZFC independent statements by stating lower bounds on the Kolmogorov complexity of randomly generated binary strings. You can tune the probability that they're true by choosing the length of the string and the lower bound carefully.
– James Hanson
yesterday




It's not a fixed sequence but you can generate arbitrarily many probably true, ZFC independent statements by stating lower bounds on the Kolmogorov complexity of randomly generated binary strings. You can tune the probability that they're true by choosing the length of the string and the lower bound carefully.
– James Hanson
yesterday




2




2




What's the difference between "true" and "provable"?
– YCor
yesterday




What's the difference between "true" and "provable"?
– YCor
yesterday




1




1




How could you "prove that only finitely many of the statements $P(n)$ are provable" (condition 3) and also "prove that infinitely many of the statements $P(n)$ are true" (condition 2)? Is the latter proof supposed to depend on large cardinals or something?
– Nik Weaver
yesterday




How could you "prove that only finitely many of the statements $P(n)$ are provable" (condition 3) and also "prove that infinitely many of the statements $P(n)$ are true" (condition 2)? Is the latter proof supposed to depend on large cardinals or something?
– Nik Weaver
yesterday




1




1




@IlyaBogdanov Was Paris–Hamilton a typo for Paris–Harrington?
– bof
yesterday




@IlyaBogdanov Was Paris–Hamilton a typo for Paris–Harrington?
– bof
yesterday




1




1




The Parris-Harrington theorem gives an infinite sequence of statements $P(n)$ that are individually provable in Peano arithmetic, for which $forall n P(n)$ is not provable in PA. It also has nothing to do with probabilistic heuristics. So this fails to meet all three criteria I listed.
– John Baez
yesterday




The Parris-Harrington theorem gives an infinite sequence of statements $P(n)$ that are individually provable in Peano arithmetic, for which $forall n P(n)$ is not provable in PA. It also has nothing to do with probabilistic heuristics. So this fails to meet all three criteria I listed.
– John Baez
yesterday










1 Answer
1






active

oldest

votes

















up vote
9
down vote













Let $c$ be a constant such that
$$mathrm{PA}notvdash K(x)ge c$$
for all binary strings $x$, where $K$ is Kolmogorov complexity. Such a $c$ exists by Chaitin's Incompleteness Theorem and the linked Q&A discusses how to find it in $mathrm{PA}+mathrm{Con}(mathrm{PA})$.



For any $d$, let $x_d$ be the indicator string for the primes among nonnegative integers $le d$. So for instance, $x_5=001101$ and $x_{9}=0011010100$.



Let $P_{d}(n)$ be the statement
$$K(x_{n+d})ge c.$$



Let $d$ be large and then let $P(n)=P_d(n)$ for all $n$.




  • If $d$ is large enough then heuristically all the $P(n)$ are true.*


  • By the Pigeonhole Principle in $mathrm{PA}+mathrm{Con}(mathrm{PA})$ we prove that all but finitely many $P(n)$ are true.


  • We cannot prove any particular $P(n)$ in $mathrm{PA}$.



(*) Heuristics may suggest something like $dge ccdot mathcal H(1/log c)$ where $mathcal H$ is the entropy function, and we heuristically assume the primes are "random modulo the Prime Number Theorem", but the primes are computable so that heuristic is not quite right (thanks @EmilJerabek).






share|cite|improve this answer



















  • 2




    But primes are not random at all, they are computable. Thus the Kolmogorov complexity of $x_d$ is a constant plus the Kolmogorov complexity of $d$. If you defined $x_d$ as a string of $d$ zeros, it would behave in an essentially identical way.
    – Emil Jeřábek
    yesterday










  • @EmilJeřábek right, I'll update...
    – Bjørn Kjos-Hanssen
    yesterday











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f315473%2fprobably-true-but-provably-unprovable%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
9
down vote













Let $c$ be a constant such that
$$mathrm{PA}notvdash K(x)ge c$$
for all binary strings $x$, where $K$ is Kolmogorov complexity. Such a $c$ exists by Chaitin's Incompleteness Theorem and the linked Q&A discusses how to find it in $mathrm{PA}+mathrm{Con}(mathrm{PA})$.



For any $d$, let $x_d$ be the indicator string for the primes among nonnegative integers $le d$. So for instance, $x_5=001101$ and $x_{9}=0011010100$.



Let $P_{d}(n)$ be the statement
$$K(x_{n+d})ge c.$$



Let $d$ be large and then let $P(n)=P_d(n)$ for all $n$.




  • If $d$ is large enough then heuristically all the $P(n)$ are true.*


  • By the Pigeonhole Principle in $mathrm{PA}+mathrm{Con}(mathrm{PA})$ we prove that all but finitely many $P(n)$ are true.


  • We cannot prove any particular $P(n)$ in $mathrm{PA}$.



(*) Heuristics may suggest something like $dge ccdot mathcal H(1/log c)$ where $mathcal H$ is the entropy function, and we heuristically assume the primes are "random modulo the Prime Number Theorem", but the primes are computable so that heuristic is not quite right (thanks @EmilJerabek).






share|cite|improve this answer



















  • 2




    But primes are not random at all, they are computable. Thus the Kolmogorov complexity of $x_d$ is a constant plus the Kolmogorov complexity of $d$. If you defined $x_d$ as a string of $d$ zeros, it would behave in an essentially identical way.
    – Emil Jeřábek
    yesterday










  • @EmilJeřábek right, I'll update...
    – Bjørn Kjos-Hanssen
    yesterday















up vote
9
down vote













Let $c$ be a constant such that
$$mathrm{PA}notvdash K(x)ge c$$
for all binary strings $x$, where $K$ is Kolmogorov complexity. Such a $c$ exists by Chaitin's Incompleteness Theorem and the linked Q&A discusses how to find it in $mathrm{PA}+mathrm{Con}(mathrm{PA})$.



For any $d$, let $x_d$ be the indicator string for the primes among nonnegative integers $le d$. So for instance, $x_5=001101$ and $x_{9}=0011010100$.



Let $P_{d}(n)$ be the statement
$$K(x_{n+d})ge c.$$



Let $d$ be large and then let $P(n)=P_d(n)$ for all $n$.




  • If $d$ is large enough then heuristically all the $P(n)$ are true.*


  • By the Pigeonhole Principle in $mathrm{PA}+mathrm{Con}(mathrm{PA})$ we prove that all but finitely many $P(n)$ are true.


  • We cannot prove any particular $P(n)$ in $mathrm{PA}$.



(*) Heuristics may suggest something like $dge ccdot mathcal H(1/log c)$ where $mathcal H$ is the entropy function, and we heuristically assume the primes are "random modulo the Prime Number Theorem", but the primes are computable so that heuristic is not quite right (thanks @EmilJerabek).






share|cite|improve this answer



















  • 2




    But primes are not random at all, they are computable. Thus the Kolmogorov complexity of $x_d$ is a constant plus the Kolmogorov complexity of $d$. If you defined $x_d$ as a string of $d$ zeros, it would behave in an essentially identical way.
    – Emil Jeřábek
    yesterday










  • @EmilJeřábek right, I'll update...
    – Bjørn Kjos-Hanssen
    yesterday













up vote
9
down vote










up vote
9
down vote









Let $c$ be a constant such that
$$mathrm{PA}notvdash K(x)ge c$$
for all binary strings $x$, where $K$ is Kolmogorov complexity. Such a $c$ exists by Chaitin's Incompleteness Theorem and the linked Q&A discusses how to find it in $mathrm{PA}+mathrm{Con}(mathrm{PA})$.



For any $d$, let $x_d$ be the indicator string for the primes among nonnegative integers $le d$. So for instance, $x_5=001101$ and $x_{9}=0011010100$.



Let $P_{d}(n)$ be the statement
$$K(x_{n+d})ge c.$$



Let $d$ be large and then let $P(n)=P_d(n)$ for all $n$.




  • If $d$ is large enough then heuristically all the $P(n)$ are true.*


  • By the Pigeonhole Principle in $mathrm{PA}+mathrm{Con}(mathrm{PA})$ we prove that all but finitely many $P(n)$ are true.


  • We cannot prove any particular $P(n)$ in $mathrm{PA}$.



(*) Heuristics may suggest something like $dge ccdot mathcal H(1/log c)$ where $mathcal H$ is the entropy function, and we heuristically assume the primes are "random modulo the Prime Number Theorem", but the primes are computable so that heuristic is not quite right (thanks @EmilJerabek).






share|cite|improve this answer














Let $c$ be a constant such that
$$mathrm{PA}notvdash K(x)ge c$$
for all binary strings $x$, where $K$ is Kolmogorov complexity. Such a $c$ exists by Chaitin's Incompleteness Theorem and the linked Q&A discusses how to find it in $mathrm{PA}+mathrm{Con}(mathrm{PA})$.



For any $d$, let $x_d$ be the indicator string for the primes among nonnegative integers $le d$. So for instance, $x_5=001101$ and $x_{9}=0011010100$.



Let $P_{d}(n)$ be the statement
$$K(x_{n+d})ge c.$$



Let $d$ be large and then let $P(n)=P_d(n)$ for all $n$.




  • If $d$ is large enough then heuristically all the $P(n)$ are true.*


  • By the Pigeonhole Principle in $mathrm{PA}+mathrm{Con}(mathrm{PA})$ we prove that all but finitely many $P(n)$ are true.


  • We cannot prove any particular $P(n)$ in $mathrm{PA}$.



(*) Heuristics may suggest something like $dge ccdot mathcal H(1/log c)$ where $mathcal H$ is the entropy function, and we heuristically assume the primes are "random modulo the Prime Number Theorem", but the primes are computable so that heuristic is not quite right (thanks @EmilJerabek).







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited yesterday

























answered yesterday









Bjørn Kjos-Hanssen

17.4k33683




17.4k33683








  • 2




    But primes are not random at all, they are computable. Thus the Kolmogorov complexity of $x_d$ is a constant plus the Kolmogorov complexity of $d$. If you defined $x_d$ as a string of $d$ zeros, it would behave in an essentially identical way.
    – Emil Jeřábek
    yesterday










  • @EmilJeřábek right, I'll update...
    – Bjørn Kjos-Hanssen
    yesterday














  • 2




    But primes are not random at all, they are computable. Thus the Kolmogorov complexity of $x_d$ is a constant plus the Kolmogorov complexity of $d$. If you defined $x_d$ as a string of $d$ zeros, it would behave in an essentially identical way.
    – Emil Jeřábek
    yesterday










  • @EmilJeřábek right, I'll update...
    – Bjørn Kjos-Hanssen
    yesterday








2




2




But primes are not random at all, they are computable. Thus the Kolmogorov complexity of $x_d$ is a constant plus the Kolmogorov complexity of $d$. If you defined $x_d$ as a string of $d$ zeros, it would behave in an essentially identical way.
– Emil Jeřábek
yesterday




But primes are not random at all, they are computable. Thus the Kolmogorov complexity of $x_d$ is a constant plus the Kolmogorov complexity of $d$. If you defined $x_d$ as a string of $d$ zeros, it would behave in an essentially identical way.
– Emil Jeřábek
yesterday












@EmilJeřábek right, I'll update...
– Bjørn Kjos-Hanssen
yesterday




@EmilJeřábek right, I'll update...
– Bjørn Kjos-Hanssen
yesterday


















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f315473%2fprobably-true-but-provably-unprovable%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Costa Masnaga

Fotorealismo

Sidney Franklin