Nonnegative coefficients of a product of polynomials
Let $P(x_1,dots,x_n)inmathbb{R}[x_1,dots,x_n]$. Does there exist an algorithm to decide whether there is a nonzero polynomial $Q(x_1,dots,x_n)inmathbb{R}[x_1,dots,x_n]$ such that the product $PQ$ has nonnegative coefficients? (The case $n=1$ is well-known and not difficult.)
polynomials positivity
add a comment |
Let $P(x_1,dots,x_n)inmathbb{R}[x_1,dots,x_n]$. Does there exist an algorithm to decide whether there is a nonzero polynomial $Q(x_1,dots,x_n)inmathbb{R}[x_1,dots,x_n]$ such that the product $PQ$ has nonnegative coefficients? (The case $n=1$ is well-known and not difficult.)
polynomials positivity
2
mathoverflow.net/a/314433/2384 and mathoverflow.net/questions/301022/…
– Gjergji Zaimi
5 hours ago
add a comment |
Let $P(x_1,dots,x_n)inmathbb{R}[x_1,dots,x_n]$. Does there exist an algorithm to decide whether there is a nonzero polynomial $Q(x_1,dots,x_n)inmathbb{R}[x_1,dots,x_n]$ such that the product $PQ$ has nonnegative coefficients? (The case $n=1$ is well-known and not difficult.)
polynomials positivity
Let $P(x_1,dots,x_n)inmathbb{R}[x_1,dots,x_n]$. Does there exist an algorithm to decide whether there is a nonzero polynomial $Q(x_1,dots,x_n)inmathbb{R}[x_1,dots,x_n]$ such that the product $PQ$ has nonnegative coefficients? (The case $n=1$ is well-known and not difficult.)
polynomials positivity
polynomials positivity
asked 6 hours ago
Richard Stanley
28.2k8113184
28.2k8113184
2
mathoverflow.net/a/314433/2384 and mathoverflow.net/questions/301022/…
– Gjergji Zaimi
5 hours ago
add a comment |
2
mathoverflow.net/a/314433/2384 and mathoverflow.net/questions/301022/…
– Gjergji Zaimi
5 hours ago
2
2
mathoverflow.net/a/314433/2384 and mathoverflow.net/questions/301022/…
– Gjergji Zaimi
5 hours ago
mathoverflow.net/a/314433/2384 and mathoverflow.net/questions/301022/…
– Gjergji Zaimi
5 hours ago
add a comment |
1 Answer
1
active
oldest
votes
Assuming $P(1,1,dots,1) >0$, the condition (necessary and sufficient) on $P$ is that $P_F$ is strictly positive on the strictly positive orthant for all faces of dimension one or more of the Newton polyhedron of $P$ (where $P_F$ is the subpolynomial of $P$ obtained by discarding all the monomials whose exponent does not lie in $F$; we of course have to permit $F$ to be the improper face), and when that occurs, we can choose $Q$ to be some (unknown) power of $Q_1= sum x^w$ where $w$ runs over the lattice points in the Newton polytope (yielding a pseudo-algorithm; we don't know if it eventually results in no negative coefficients; it will only do this if a $Q$ exists, and even then, there does not appear to be a way of estimating the power of $Q_1$ required).
Is there an algorithm to decide whether a polynomial is strictly positive on the positive orthant? If so, then it can be applied to all the $P_F$.
If however, as I suspect, there is no algorithm (to decide strict positivity on an orthant), then there is a problem. In the one variable case, if $Q$ exists, it can be chosen of the form $(1+x)^n$, and so we obtain a pseudo-algorithm (we don't know if it will terminate) by repeatedly adding pairs of consecutive coefficients). With more than one variable, no such single poly powers of which will do (in fact, infinitely many are required).
We can get some inkling of what $Q$ should look like, by restricting to faces; assuming the Newton polyhedron of $Q$ is $k$ times that of $P$ (which we can assume for some $k$, except we don't know what the minimum $k$ will be), then $P_F Q_{kF}$ will also have no negative coefficients.
Thanks for this useful answer. For one variable there is no problem finding the exponent of $1+x$ by looking at the real linear and quadratic factors of $P(x)$ separately. The condition for $Q(x)$ to exist is that $P(x)$ has no positive real zeros.
– Richard Stanley
1 hour ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f319377%2fnonnegative-coefficients-of-a-product-of-polynomials%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Assuming $P(1,1,dots,1) >0$, the condition (necessary and sufficient) on $P$ is that $P_F$ is strictly positive on the strictly positive orthant for all faces of dimension one or more of the Newton polyhedron of $P$ (where $P_F$ is the subpolynomial of $P$ obtained by discarding all the monomials whose exponent does not lie in $F$; we of course have to permit $F$ to be the improper face), and when that occurs, we can choose $Q$ to be some (unknown) power of $Q_1= sum x^w$ where $w$ runs over the lattice points in the Newton polytope (yielding a pseudo-algorithm; we don't know if it eventually results in no negative coefficients; it will only do this if a $Q$ exists, and even then, there does not appear to be a way of estimating the power of $Q_1$ required).
Is there an algorithm to decide whether a polynomial is strictly positive on the positive orthant? If so, then it can be applied to all the $P_F$.
If however, as I suspect, there is no algorithm (to decide strict positivity on an orthant), then there is a problem. In the one variable case, if $Q$ exists, it can be chosen of the form $(1+x)^n$, and so we obtain a pseudo-algorithm (we don't know if it will terminate) by repeatedly adding pairs of consecutive coefficients). With more than one variable, no such single poly powers of which will do (in fact, infinitely many are required).
We can get some inkling of what $Q$ should look like, by restricting to faces; assuming the Newton polyhedron of $Q$ is $k$ times that of $P$ (which we can assume for some $k$, except we don't know what the minimum $k$ will be), then $P_F Q_{kF}$ will also have no negative coefficients.
Thanks for this useful answer. For one variable there is no problem finding the exponent of $1+x$ by looking at the real linear and quadratic factors of $P(x)$ separately. The condition for $Q(x)$ to exist is that $P(x)$ has no positive real zeros.
– Richard Stanley
1 hour ago
add a comment |
Assuming $P(1,1,dots,1) >0$, the condition (necessary and sufficient) on $P$ is that $P_F$ is strictly positive on the strictly positive orthant for all faces of dimension one or more of the Newton polyhedron of $P$ (where $P_F$ is the subpolynomial of $P$ obtained by discarding all the monomials whose exponent does not lie in $F$; we of course have to permit $F$ to be the improper face), and when that occurs, we can choose $Q$ to be some (unknown) power of $Q_1= sum x^w$ where $w$ runs over the lattice points in the Newton polytope (yielding a pseudo-algorithm; we don't know if it eventually results in no negative coefficients; it will only do this if a $Q$ exists, and even then, there does not appear to be a way of estimating the power of $Q_1$ required).
Is there an algorithm to decide whether a polynomial is strictly positive on the positive orthant? If so, then it can be applied to all the $P_F$.
If however, as I suspect, there is no algorithm (to decide strict positivity on an orthant), then there is a problem. In the one variable case, if $Q$ exists, it can be chosen of the form $(1+x)^n$, and so we obtain a pseudo-algorithm (we don't know if it will terminate) by repeatedly adding pairs of consecutive coefficients). With more than one variable, no such single poly powers of which will do (in fact, infinitely many are required).
We can get some inkling of what $Q$ should look like, by restricting to faces; assuming the Newton polyhedron of $Q$ is $k$ times that of $P$ (which we can assume for some $k$, except we don't know what the minimum $k$ will be), then $P_F Q_{kF}$ will also have no negative coefficients.
Thanks for this useful answer. For one variable there is no problem finding the exponent of $1+x$ by looking at the real linear and quadratic factors of $P(x)$ separately. The condition for $Q(x)$ to exist is that $P(x)$ has no positive real zeros.
– Richard Stanley
1 hour ago
add a comment |
Assuming $P(1,1,dots,1) >0$, the condition (necessary and sufficient) on $P$ is that $P_F$ is strictly positive on the strictly positive orthant for all faces of dimension one or more of the Newton polyhedron of $P$ (where $P_F$ is the subpolynomial of $P$ obtained by discarding all the monomials whose exponent does not lie in $F$; we of course have to permit $F$ to be the improper face), and when that occurs, we can choose $Q$ to be some (unknown) power of $Q_1= sum x^w$ where $w$ runs over the lattice points in the Newton polytope (yielding a pseudo-algorithm; we don't know if it eventually results in no negative coefficients; it will only do this if a $Q$ exists, and even then, there does not appear to be a way of estimating the power of $Q_1$ required).
Is there an algorithm to decide whether a polynomial is strictly positive on the positive orthant? If so, then it can be applied to all the $P_F$.
If however, as I suspect, there is no algorithm (to decide strict positivity on an orthant), then there is a problem. In the one variable case, if $Q$ exists, it can be chosen of the form $(1+x)^n$, and so we obtain a pseudo-algorithm (we don't know if it will terminate) by repeatedly adding pairs of consecutive coefficients). With more than one variable, no such single poly powers of which will do (in fact, infinitely many are required).
We can get some inkling of what $Q$ should look like, by restricting to faces; assuming the Newton polyhedron of $Q$ is $k$ times that of $P$ (which we can assume for some $k$, except we don't know what the minimum $k$ will be), then $P_F Q_{kF}$ will also have no negative coefficients.
Assuming $P(1,1,dots,1) >0$, the condition (necessary and sufficient) on $P$ is that $P_F$ is strictly positive on the strictly positive orthant for all faces of dimension one or more of the Newton polyhedron of $P$ (where $P_F$ is the subpolynomial of $P$ obtained by discarding all the monomials whose exponent does not lie in $F$; we of course have to permit $F$ to be the improper face), and when that occurs, we can choose $Q$ to be some (unknown) power of $Q_1= sum x^w$ where $w$ runs over the lattice points in the Newton polytope (yielding a pseudo-algorithm; we don't know if it eventually results in no negative coefficients; it will only do this if a $Q$ exists, and even then, there does not appear to be a way of estimating the power of $Q_1$ required).
Is there an algorithm to decide whether a polynomial is strictly positive on the positive orthant? If so, then it can be applied to all the $P_F$.
If however, as I suspect, there is no algorithm (to decide strict positivity on an orthant), then there is a problem. In the one variable case, if $Q$ exists, it can be chosen of the form $(1+x)^n$, and so we obtain a pseudo-algorithm (we don't know if it will terminate) by repeatedly adding pairs of consecutive coefficients). With more than one variable, no such single poly powers of which will do (in fact, infinitely many are required).
We can get some inkling of what $Q$ should look like, by restricting to faces; assuming the Newton polyhedron of $Q$ is $k$ times that of $P$ (which we can assume for some $k$, except we don't know what the minimum $k$ will be), then $P_F Q_{kF}$ will also have no negative coefficients.
edited 1 hour ago
answered 2 hours ago
David Handelman
3,66211428
3,66211428
Thanks for this useful answer. For one variable there is no problem finding the exponent of $1+x$ by looking at the real linear and quadratic factors of $P(x)$ separately. The condition for $Q(x)$ to exist is that $P(x)$ has no positive real zeros.
– Richard Stanley
1 hour ago
add a comment |
Thanks for this useful answer. For one variable there is no problem finding the exponent of $1+x$ by looking at the real linear and quadratic factors of $P(x)$ separately. The condition for $Q(x)$ to exist is that $P(x)$ has no positive real zeros.
– Richard Stanley
1 hour ago
Thanks for this useful answer. For one variable there is no problem finding the exponent of $1+x$ by looking at the real linear and quadratic factors of $P(x)$ separately. The condition for $Q(x)$ to exist is that $P(x)$ has no positive real zeros.
– Richard Stanley
1 hour ago
Thanks for this useful answer. For one variable there is no problem finding the exponent of $1+x$ by looking at the real linear and quadratic factors of $P(x)$ separately. The condition for $Q(x)$ to exist is that $P(x)$ has no positive real zeros.
– Richard Stanley
1 hour ago
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f319377%2fnonnegative-coefficients-of-a-product-of-polynomials%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
mathoverflow.net/a/314433/2384 and mathoverflow.net/questions/301022/…
– Gjergji Zaimi
5 hours ago