How to solve this integral by u-substitution











up vote
3
down vote

favorite












$$intfrac{ln x}{x^2(ln (x)-1)^2}dx$$



Hello, I haven't be able to solve this integral, I've tried to do $u = ln (x)-1$ but couldn't make it work, any insight?










share|cite|improve this question









New contributor




Andres Oropeza is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    up vote
    3
    down vote

    favorite












    $$intfrac{ln x}{x^2(ln (x)-1)^2}dx$$



    Hello, I haven't be able to solve this integral, I've tried to do $u = ln (x)-1$ but couldn't make it work, any insight?










    share|cite|improve this question









    New contributor




    Andres Oropeza is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      up vote
      3
      down vote

      favorite









      up vote
      3
      down vote

      favorite











      $$intfrac{ln x}{x^2(ln (x)-1)^2}dx$$



      Hello, I haven't be able to solve this integral, I've tried to do $u = ln (x)-1$ but couldn't make it work, any insight?










      share|cite|improve this question









      New contributor




      Andres Oropeza is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      $$intfrac{ln x}{x^2(ln (x)-1)^2}dx$$



      Hello, I haven't be able to solve this integral, I've tried to do $u = ln (x)-1$ but couldn't make it work, any insight?







      calculus integration






      share|cite|improve this question









      New contributor




      Andres Oropeza is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      Andres Oropeza is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 1 hour ago









      KM101

      2,061314




      2,061314






      New contributor




      Andres Oropeza is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 2 hours ago









      Andres Oropeza

      161




      161




      New contributor




      Andres Oropeza is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Andres Oropeza is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Andres Oropeza is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          7
          down vote













          $xln x-x=uimplies ln x dx=duimpliesdisplaystyle intfrac{du}{u^2}=dfrac{u^{-1}}{-1}+C=dfrac{1}{x-xln x}+C.$






          share|cite|improve this answer

















          • 2




            I think it should be noted that the motivation of the substitution is because the denominator can be rewritten as $(x(ln x-1))^2$, and of course the nice fact that $du/dx$ turns out exactly to be the numerator.
            – YiFan
            1 hour ago











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          Andres Oropeza is a new contributor. Be nice, and check out our Code of Conduct.










           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010835%2fhow-to-solve-this-integral-by-u-substitution%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          7
          down vote













          $xln x-x=uimplies ln x dx=duimpliesdisplaystyle intfrac{du}{u^2}=dfrac{u^{-1}}{-1}+C=dfrac{1}{x-xln x}+C.$






          share|cite|improve this answer

















          • 2




            I think it should be noted that the motivation of the substitution is because the denominator can be rewritten as $(x(ln x-1))^2$, and of course the nice fact that $du/dx$ turns out exactly to be the numerator.
            – YiFan
            1 hour ago















          up vote
          7
          down vote













          $xln x-x=uimplies ln x dx=duimpliesdisplaystyle intfrac{du}{u^2}=dfrac{u^{-1}}{-1}+C=dfrac{1}{x-xln x}+C.$






          share|cite|improve this answer

















          • 2




            I think it should be noted that the motivation of the substitution is because the denominator can be rewritten as $(x(ln x-1))^2$, and of course the nice fact that $du/dx$ turns out exactly to be the numerator.
            – YiFan
            1 hour ago













          up vote
          7
          down vote










          up vote
          7
          down vote









          $xln x-x=uimplies ln x dx=duimpliesdisplaystyle intfrac{du}{u^2}=dfrac{u^{-1}}{-1}+C=dfrac{1}{x-xln x}+C.$






          share|cite|improve this answer












          $xln x-x=uimplies ln x dx=duimpliesdisplaystyle intfrac{du}{u^2}=dfrac{u^{-1}}{-1}+C=dfrac{1}{x-xln x}+C.$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 1 hour ago









          Yadati Kiran

          728214




          728214








          • 2




            I think it should be noted that the motivation of the substitution is because the denominator can be rewritten as $(x(ln x-1))^2$, and of course the nice fact that $du/dx$ turns out exactly to be the numerator.
            – YiFan
            1 hour ago














          • 2




            I think it should be noted that the motivation of the substitution is because the denominator can be rewritten as $(x(ln x-1))^2$, and of course the nice fact that $du/dx$ turns out exactly to be the numerator.
            – YiFan
            1 hour ago








          2




          2




          I think it should be noted that the motivation of the substitution is because the denominator can be rewritten as $(x(ln x-1))^2$, and of course the nice fact that $du/dx$ turns out exactly to be the numerator.
          – YiFan
          1 hour ago




          I think it should be noted that the motivation of the substitution is because the denominator can be rewritten as $(x(ln x-1))^2$, and of course the nice fact that $du/dx$ turns out exactly to be the numerator.
          – YiFan
          1 hour ago










          Andres Oropeza is a new contributor. Be nice, and check out our Code of Conduct.










           

          draft saved


          draft discarded


















          Andres Oropeza is a new contributor. Be nice, and check out our Code of Conduct.













          Andres Oropeza is a new contributor. Be nice, and check out our Code of Conduct.












          Andres Oropeza is a new contributor. Be nice, and check out our Code of Conduct.















           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010835%2fhow-to-solve-this-integral-by-u-substitution%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Costa Masnaga

          Fotorealismo

          Sidney Franklin