How can i compute multi-dimension mean matrix?












0














I want to compute dynamic conditional correlation(dcc) mean matrix at all time.
Rho is each day matrix.
but i want to make a mean matrix all day (not each day)



this is DCC-garch model.



library(rugarch)
library(rmgarch)
library(xts)
stockdata<-read.zoo("C:\Users\Taehee Cha\Desktop\\data\EUCall.csv",
header=TRUE,
sep=",",
format = "%Y-%m-%d",
nrow=4433)
stock_xts<-as.xts(stockdata,dateFormat='POSIXct')

DKOSPI200 <-diff(log(stock_xts$KOSPI200))*100
DDAX30 <-diff(log(stock_xts$DAX30))*100
DSNP500 <-diff(log(stock_xts$SNP500))*100
DFTSE100 <-diff(log(stock_xts$FTSE100))*100
...
data2<-data.frame(DKOSPI200,DDAX30,DSNP500,DFTSE100,DEUROSTOXX50,DFTSEMIB,DNIKKEI225,DSNPTSX,DCAC40,DJSE40,
DRTS,DIPC,DBOVESPA,DTadawul,DMERV,DSENSEX,DJSX,DSSE,DXU100,DSNPASX,
DATHEX,DAEX,DOBX,DSNPNZ50,DTAIEX,DOMXC20,DKLCI,DBEL20,DOMXS30,DSMI,
DIBEX,DSTI,DADX,DISEQ,DATX,DTA35,DEGX30,DPX50,DIPSA,DQE,
DIGBC,DSET,DKarachi100,DSNPBVL,DPSI20,DWIG20,DOMXH25,DPSEI,DBUX,DHANGSENG)


Univarate GARCH specification



gjrGARCH.spec <-ugarchspec(variance.model=list(model="gjrGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(1,0)))


Multivarate GARCH specification



dcc.gjrGARCH.spec=dccspec(uspec=multispec(replicate(50,gjrGARCH.spec)),
dccOrder=c(1,1),
distribution="mvnorm")
OUTCOME=dccfit(dcc.gjrGARCH.spec, data=data2)
Fit<-fitted(OUTCOME)
Sigma<-sigma(OUTCOME)
Rho<-rcor(OUTCOME)

dim(Rho)
>50 50 4432


I tried this, but I failed.



dccmean<-apply(Rho, c(1:4432), mean)


Error message:



Error in if (d2 == 0L) { : missing value where TRUE/FALSE needed


please help me....



> dput(head(data2))



structure(list(KOSPI200 = c(-0.64107155376405, -2.63428514277591, 
-3.02361881202007, -0.348129159251176, -0.8463497185911, 0.933495693605124
), DAX30 = c(-0.275158289647415, -2.31165589473132, 0.132288230298805,
-0.916302412003311, -0.249954511741102, 1.5067409708557), SNP500 = c(0,
-1.23978129442266, -2.37787312356224, 0.68553903957973, -1.45026278352685,
-0.113477591886735), FTSE100 = c(-0.912643889420117, -1.27612498082748,
-0.189622000351441, -0.0175554735125871, -1.40042215908522, 1.65029716900129
), EUROSTOXX50 = c(-0.693995680230763, -2.63873467285407, 0.0340923169277474,
-1.10692637764913, -1.45688992650648, 0.90690109636018), FTSEMIB = c(-0.207307997135331,
-2.20987523065315, 0.11929602916414, -0.591164923299203, -1.23334692081265,
0.0674451667508791), NIKKEI225 = c(-0.172132904979705, -2.41825620786038,
-0.541031623946608, 0.494946220458736, -2.43002026761108, 3.30050037277818
), SNPTSX = c(-0.228827286223954, -0.618158165738869, -1.163192751949,
0.611234081963197, -1.07887096999253, 0.15982056970163), CAC40 = c(-0.996225333005363,
-2.45923020374033, 0.558708030675348, -1.07932737047562, -1.18770661796788,
0.946736097241008), JSE40 = c(-1.24801019778307, -0.660388491185593,
-0.378077731086712, 1.12913917165454, -0.270357667812782, 0.925230160391344
), RTS = c(1.69252595201295, -2.47912051247043, -1.68278329224893,
-0.628193976078784, -5.81832854668214, 2.33324601133127), IPC = c(0.410660821053099,
-0.793221688816637, -1.46058560736098, -0.0995162816563422, 0.0582618177329408,
-2.24304020680233), BOVESPA = c(-2.08399544316435, -0.0640501036023977,
-1.00884481719454, 0, -2.45326225130107, 1.76775969319749), Tadawul = c(-0.0751612871260576,
1.06988441714364, 0.467558379080923, 0.015629948658713, -0.479468927554549,
0.115645625170213), MERV = c(-0.812834284218145, -3.48526114996641,
-0.789176542098158, 0, -6.3347627637631, -2.25802417775345),
SENSEX = c(0.173466860804083, -0.357822108056638, -0.45387164272519,
1.1318914393021, 1.4301129114795, 2.24172363852979), JSX = c(0.464645515331874,
0.433624214120076, 0.382746462253802, 0.245017602482989,
0.417626097951018, 0.919117215344212), SSE = c(-0.9304947624722,
-0.512019911931727, -0.0399062163143782, 0.923519675548068,
-0.965701174169897, -0.149922817153048), XU100 = c(0.83997183599358,
-9.44220433432204, -1.19486088286003, -5.93037167728525,
-8.13019316543659, 4.39805147087551), SNPASX = c(-1.52481837941529,
-0.710076219124112, -0.355441763724151, 0.43889183264465,
0.632546988595983, 0.431277069387725), ATHEX = c(0.217251999604962,
-0.113093185749946, -4.08702446400842, -1.49759637062132,
-2.89449541976028, 2.84821759239637), AEX = c(-0.302724751872496,
-1.93350674725812, -0.334531789971226, -0.27844233175518,
-1.47467944242914, 0.59320521917563), OBX = c(-0.633345799178109,
-0.0872437271016935, -0.0686020794624653, -0.751459482064121,
-0.314782430663918, -0.138818800687446), SNPNZ50 = c(-0.589289243578772,
-0.212470628567818, -1.09525597597484, 1.56062961309287,
-0.594970797797778, 0.308439154148132), TAIEX = c(-0.634186259073921,
-0.0465155309724352, -1.06170058328026, -0.875355087660168,
-1.4930992055346, 1.85698166429091), OMXC20 = c(0.0415607672345608,
-0.892547743122307, 0.895744009882993, 0.00639222705407505,
-0.515886239547392, -0.744864387047794), KLCI = c(3.12710622798287,
1.55475618644338, 0.141888091655584, -0.2344629562125, -1.32130772048118,
-1.3324408754646), BEL20 = c(0.916239489510673, -0.838871120292239,
-0.349848101836958, 0.131119279926573, -0.220949965581685,
0.925072128183135), OMXS30 = c(-2.30694346428235, -3.59314374436401,
-0.132526843920378, -0.26558175544098, -0.700219536449254,
2.21356560948696), SMI = c(-0.923178651961543, -1.9888683347407,
0.190440901601185, -1.31581319814948, -1.24166996356809,
1.74938111396603), IBEX = c(-1.10228247337272, -3.30519689438287,
0.28541077977593, -0.719194686241131, -2.37890150982238,
-1.20979032592885), STI = c(-0.376825693193794, -1.56959227075815,
-0.209405887533087, 1.59189359203387, -0.998471722830718,
0.524545937488519), ADX = c(0, 0.234110707042312, -0.140988509294804,
-0.107833632972643, -0.00392341494084292, 0), ISEQ = c(-0.497210204416199,
-1.28827940816549, 1.05427460869301, 0.691923594974142, -1.2985333059083,
1.05885040639215), ATX = c(0.196176688098504, -0.397720264421864,
0.765032409498989, 0.634860192671294, -0.718109388684507,
0.288191756274081), TA35 = c(-0.467643907976623, -1.6933214269244,
0.638360404963567, 1.66873087937374, -1.03207784150818, 1.98476257832283
), EGX30 = c(-1.60808620054533, 0.486603179063838, 0.042060989053283,
-0.582335360174024, -1.05485347621963, 0.329916835288824),
PX50 = c(0, 0, -1.53717800478548, -0.567132576686191, -1.79645549752987,
0.100654261140143), IPSA = c(0.561439712306022, 0.849792667039129,
-0.327031029818503, -0.154168073702365, -0.737696755949457,
-0.476817106576277), QE = c(0.124155575561335, -0.299696872832733,
-0.087886339332055, 0.0366286953290995, 0.109805655043083,
0.0585137524009127), IGBC = c(0.151884596926966, -0.461362987666014,
1.12811837108895, 0.0931901841028981, 0.149517561508272,
0.312176099410877), SET = c(-0.475964725298805, 0, -0.126280143061397,
-0.243770852799319, -3.47030045650181, 0.752026997121558),
Karachi100 = c(-1.2595250361283, -1.09859841657665, -0.467295948347779,
-0.176282035250352, 1.06144685237481, 0.614077017080827),
SNPBVL = c(-0.0916272845215893, -0.488603970907153, -0.635609686024718,
0.72544080956467, -1.05989054433602, -0.290056131898186),
PSI20 = c(-0.498150623441695, -2.4995090145449, -0.916173928749231,
0.134620833204835, -1.96674118284665, 0.125363501017972),
WIG20 = c(-0.186154209522993, 2.29090171954054, -1.21234613135197,
-2.35741884661973, -1.39537944100319, 4.04050146384076),
OMXH25 = c(-0.734161177012371, -3.2781107280087, -0.274240630336653,
0.164265778301331, -2.88555610228327, 0.0196123710402674),
PSEI = c(1.16491407781849, -0.379401344663943, 0.604503127264966,
-0.551543468404248, -0.542372265371061, 0.668217806598204
), BUX = c(0.745432319945749, -0.407296683745706, 1.4847908668413,
-1.73656177766137, -1.70838647119353, 0.642365839539494),
HANGSENG = c(-1.58777648289217, 0, -2.40414908704771, 0.182801734695737,
-1.47377260414583, 1.05050572830176)), row.names = c("2001-07-05",
"2001-07-06", "2001-07-09", "2001-07-10", "2001-07-11", "2001-07-12"
), class = "data.frame")


I think it will be more useful to solve my problem.



dim(Rho)
>50 50 4432

> dput(head(Rho))
c(1, 0.28274756492168, 0.366762864615763, 0.287187938929745,
0.279313675150249, 0.25099353597608)

> str(Rho)
num [1:50, 1:50, 1:4432] 1 0.283 0.367 0.287 0.279 ...
- attr(*, "dimnames")=List of 3
..$ : chr [1:50] "KOSPI200" "DAX30" "SNP500" "FTSE100" ...
..$ : chr [1:50] "KOSPI200" "DAX30" "SNP500" "FTSE100" ...
..$ : chr [1:4432] "2001-07-05" "2001-07-06" "2001-07-09" "2001-07-10" ...


My questions



#, , "2001-07-05"

# KOSPI200 DAX30 SNP500 FTSE100
#KOSPI200 1 5 9 13
#DAX30 2 6 10 14
#SNP500 3 7 11 15
#FTSE100 4 8 12 16

#, , "2001-07-06"

# KOSPI200 DAX30 SNP500 FTSE100
#KOSPI200 1 5 9 13
#DAX30 2 6 10 14
#SNP500 3 7 11 15
#FTSE100 4 8 12 16

##----->I want to this ((ex)sum)

#, ,

# KOSPI200 DAX30 SNP500 FTSE100
#KOSPI200 2 10 18 26
#DAX30 4 12 20 28
#SNP500 6 14 22 30
#FTSE100 8 16 24 32









share|improve this question




















  • 1




    Please specify the used libraries and provide data2.
    – jay.sf
    Nov 20 at 13:41






  • 1




    data2 is difference time data.
    – 차태희
    Nov 20 at 15:12






  • 1




    Can you post the output of dput(data2), or if its too long dput(head(data2)) into the question?
    – jay.sf
    Nov 20 at 15:14










  • I modified the edit.
    – 차태희
    Nov 20 at 15:31






  • 1




    Better. But we cannot reproduce "C:\Users\Taehee Cha\Desktop\\data\EUCall.csv". You should provide stockdata too. Probably you should consider How to make a great reproducible example, thanks.
    – jay.sf
    Nov 20 at 15:47
















0














I want to compute dynamic conditional correlation(dcc) mean matrix at all time.
Rho is each day matrix.
but i want to make a mean matrix all day (not each day)



this is DCC-garch model.



library(rugarch)
library(rmgarch)
library(xts)
stockdata<-read.zoo("C:\Users\Taehee Cha\Desktop\\data\EUCall.csv",
header=TRUE,
sep=",",
format = "%Y-%m-%d",
nrow=4433)
stock_xts<-as.xts(stockdata,dateFormat='POSIXct')

DKOSPI200 <-diff(log(stock_xts$KOSPI200))*100
DDAX30 <-diff(log(stock_xts$DAX30))*100
DSNP500 <-diff(log(stock_xts$SNP500))*100
DFTSE100 <-diff(log(stock_xts$FTSE100))*100
...
data2<-data.frame(DKOSPI200,DDAX30,DSNP500,DFTSE100,DEUROSTOXX50,DFTSEMIB,DNIKKEI225,DSNPTSX,DCAC40,DJSE40,
DRTS,DIPC,DBOVESPA,DTadawul,DMERV,DSENSEX,DJSX,DSSE,DXU100,DSNPASX,
DATHEX,DAEX,DOBX,DSNPNZ50,DTAIEX,DOMXC20,DKLCI,DBEL20,DOMXS30,DSMI,
DIBEX,DSTI,DADX,DISEQ,DATX,DTA35,DEGX30,DPX50,DIPSA,DQE,
DIGBC,DSET,DKarachi100,DSNPBVL,DPSI20,DWIG20,DOMXH25,DPSEI,DBUX,DHANGSENG)


Univarate GARCH specification



gjrGARCH.spec <-ugarchspec(variance.model=list(model="gjrGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(1,0)))


Multivarate GARCH specification



dcc.gjrGARCH.spec=dccspec(uspec=multispec(replicate(50,gjrGARCH.spec)),
dccOrder=c(1,1),
distribution="mvnorm")
OUTCOME=dccfit(dcc.gjrGARCH.spec, data=data2)
Fit<-fitted(OUTCOME)
Sigma<-sigma(OUTCOME)
Rho<-rcor(OUTCOME)

dim(Rho)
>50 50 4432


I tried this, but I failed.



dccmean<-apply(Rho, c(1:4432), mean)


Error message:



Error in if (d2 == 0L) { : missing value where TRUE/FALSE needed


please help me....



> dput(head(data2))



structure(list(KOSPI200 = c(-0.64107155376405, -2.63428514277591, 
-3.02361881202007, -0.348129159251176, -0.8463497185911, 0.933495693605124
), DAX30 = c(-0.275158289647415, -2.31165589473132, 0.132288230298805,
-0.916302412003311, -0.249954511741102, 1.5067409708557), SNP500 = c(0,
-1.23978129442266, -2.37787312356224, 0.68553903957973, -1.45026278352685,
-0.113477591886735), FTSE100 = c(-0.912643889420117, -1.27612498082748,
-0.189622000351441, -0.0175554735125871, -1.40042215908522, 1.65029716900129
), EUROSTOXX50 = c(-0.693995680230763, -2.63873467285407, 0.0340923169277474,
-1.10692637764913, -1.45688992650648, 0.90690109636018), FTSEMIB = c(-0.207307997135331,
-2.20987523065315, 0.11929602916414, -0.591164923299203, -1.23334692081265,
0.0674451667508791), NIKKEI225 = c(-0.172132904979705, -2.41825620786038,
-0.541031623946608, 0.494946220458736, -2.43002026761108, 3.30050037277818
), SNPTSX = c(-0.228827286223954, -0.618158165738869, -1.163192751949,
0.611234081963197, -1.07887096999253, 0.15982056970163), CAC40 = c(-0.996225333005363,
-2.45923020374033, 0.558708030675348, -1.07932737047562, -1.18770661796788,
0.946736097241008), JSE40 = c(-1.24801019778307, -0.660388491185593,
-0.378077731086712, 1.12913917165454, -0.270357667812782, 0.925230160391344
), RTS = c(1.69252595201295, -2.47912051247043, -1.68278329224893,
-0.628193976078784, -5.81832854668214, 2.33324601133127), IPC = c(0.410660821053099,
-0.793221688816637, -1.46058560736098, -0.0995162816563422, 0.0582618177329408,
-2.24304020680233), BOVESPA = c(-2.08399544316435, -0.0640501036023977,
-1.00884481719454, 0, -2.45326225130107, 1.76775969319749), Tadawul = c(-0.0751612871260576,
1.06988441714364, 0.467558379080923, 0.015629948658713, -0.479468927554549,
0.115645625170213), MERV = c(-0.812834284218145, -3.48526114996641,
-0.789176542098158, 0, -6.3347627637631, -2.25802417775345),
SENSEX = c(0.173466860804083, -0.357822108056638, -0.45387164272519,
1.1318914393021, 1.4301129114795, 2.24172363852979), JSX = c(0.464645515331874,
0.433624214120076, 0.382746462253802, 0.245017602482989,
0.417626097951018, 0.919117215344212), SSE = c(-0.9304947624722,
-0.512019911931727, -0.0399062163143782, 0.923519675548068,
-0.965701174169897, -0.149922817153048), XU100 = c(0.83997183599358,
-9.44220433432204, -1.19486088286003, -5.93037167728525,
-8.13019316543659, 4.39805147087551), SNPASX = c(-1.52481837941529,
-0.710076219124112, -0.355441763724151, 0.43889183264465,
0.632546988595983, 0.431277069387725), ATHEX = c(0.217251999604962,
-0.113093185749946, -4.08702446400842, -1.49759637062132,
-2.89449541976028, 2.84821759239637), AEX = c(-0.302724751872496,
-1.93350674725812, -0.334531789971226, -0.27844233175518,
-1.47467944242914, 0.59320521917563), OBX = c(-0.633345799178109,
-0.0872437271016935, -0.0686020794624653, -0.751459482064121,
-0.314782430663918, -0.138818800687446), SNPNZ50 = c(-0.589289243578772,
-0.212470628567818, -1.09525597597484, 1.56062961309287,
-0.594970797797778, 0.308439154148132), TAIEX = c(-0.634186259073921,
-0.0465155309724352, -1.06170058328026, -0.875355087660168,
-1.4930992055346, 1.85698166429091), OMXC20 = c(0.0415607672345608,
-0.892547743122307, 0.895744009882993, 0.00639222705407505,
-0.515886239547392, -0.744864387047794), KLCI = c(3.12710622798287,
1.55475618644338, 0.141888091655584, -0.2344629562125, -1.32130772048118,
-1.3324408754646), BEL20 = c(0.916239489510673, -0.838871120292239,
-0.349848101836958, 0.131119279926573, -0.220949965581685,
0.925072128183135), OMXS30 = c(-2.30694346428235, -3.59314374436401,
-0.132526843920378, -0.26558175544098, -0.700219536449254,
2.21356560948696), SMI = c(-0.923178651961543, -1.9888683347407,
0.190440901601185, -1.31581319814948, -1.24166996356809,
1.74938111396603), IBEX = c(-1.10228247337272, -3.30519689438287,
0.28541077977593, -0.719194686241131, -2.37890150982238,
-1.20979032592885), STI = c(-0.376825693193794, -1.56959227075815,
-0.209405887533087, 1.59189359203387, -0.998471722830718,
0.524545937488519), ADX = c(0, 0.234110707042312, -0.140988509294804,
-0.107833632972643, -0.00392341494084292, 0), ISEQ = c(-0.497210204416199,
-1.28827940816549, 1.05427460869301, 0.691923594974142, -1.2985333059083,
1.05885040639215), ATX = c(0.196176688098504, -0.397720264421864,
0.765032409498989, 0.634860192671294, -0.718109388684507,
0.288191756274081), TA35 = c(-0.467643907976623, -1.6933214269244,
0.638360404963567, 1.66873087937374, -1.03207784150818, 1.98476257832283
), EGX30 = c(-1.60808620054533, 0.486603179063838, 0.042060989053283,
-0.582335360174024, -1.05485347621963, 0.329916835288824),
PX50 = c(0, 0, -1.53717800478548, -0.567132576686191, -1.79645549752987,
0.100654261140143), IPSA = c(0.561439712306022, 0.849792667039129,
-0.327031029818503, -0.154168073702365, -0.737696755949457,
-0.476817106576277), QE = c(0.124155575561335, -0.299696872832733,
-0.087886339332055, 0.0366286953290995, 0.109805655043083,
0.0585137524009127), IGBC = c(0.151884596926966, -0.461362987666014,
1.12811837108895, 0.0931901841028981, 0.149517561508272,
0.312176099410877), SET = c(-0.475964725298805, 0, -0.126280143061397,
-0.243770852799319, -3.47030045650181, 0.752026997121558),
Karachi100 = c(-1.2595250361283, -1.09859841657665, -0.467295948347779,
-0.176282035250352, 1.06144685237481, 0.614077017080827),
SNPBVL = c(-0.0916272845215893, -0.488603970907153, -0.635609686024718,
0.72544080956467, -1.05989054433602, -0.290056131898186),
PSI20 = c(-0.498150623441695, -2.4995090145449, -0.916173928749231,
0.134620833204835, -1.96674118284665, 0.125363501017972),
WIG20 = c(-0.186154209522993, 2.29090171954054, -1.21234613135197,
-2.35741884661973, -1.39537944100319, 4.04050146384076),
OMXH25 = c(-0.734161177012371, -3.2781107280087, -0.274240630336653,
0.164265778301331, -2.88555610228327, 0.0196123710402674),
PSEI = c(1.16491407781849, -0.379401344663943, 0.604503127264966,
-0.551543468404248, -0.542372265371061, 0.668217806598204
), BUX = c(0.745432319945749, -0.407296683745706, 1.4847908668413,
-1.73656177766137, -1.70838647119353, 0.642365839539494),
HANGSENG = c(-1.58777648289217, 0, -2.40414908704771, 0.182801734695737,
-1.47377260414583, 1.05050572830176)), row.names = c("2001-07-05",
"2001-07-06", "2001-07-09", "2001-07-10", "2001-07-11", "2001-07-12"
), class = "data.frame")


I think it will be more useful to solve my problem.



dim(Rho)
>50 50 4432

> dput(head(Rho))
c(1, 0.28274756492168, 0.366762864615763, 0.287187938929745,
0.279313675150249, 0.25099353597608)

> str(Rho)
num [1:50, 1:50, 1:4432] 1 0.283 0.367 0.287 0.279 ...
- attr(*, "dimnames")=List of 3
..$ : chr [1:50] "KOSPI200" "DAX30" "SNP500" "FTSE100" ...
..$ : chr [1:50] "KOSPI200" "DAX30" "SNP500" "FTSE100" ...
..$ : chr [1:4432] "2001-07-05" "2001-07-06" "2001-07-09" "2001-07-10" ...


My questions



#, , "2001-07-05"

# KOSPI200 DAX30 SNP500 FTSE100
#KOSPI200 1 5 9 13
#DAX30 2 6 10 14
#SNP500 3 7 11 15
#FTSE100 4 8 12 16

#, , "2001-07-06"

# KOSPI200 DAX30 SNP500 FTSE100
#KOSPI200 1 5 9 13
#DAX30 2 6 10 14
#SNP500 3 7 11 15
#FTSE100 4 8 12 16

##----->I want to this ((ex)sum)

#, ,

# KOSPI200 DAX30 SNP500 FTSE100
#KOSPI200 2 10 18 26
#DAX30 4 12 20 28
#SNP500 6 14 22 30
#FTSE100 8 16 24 32









share|improve this question




















  • 1




    Please specify the used libraries and provide data2.
    – jay.sf
    Nov 20 at 13:41






  • 1




    data2 is difference time data.
    – 차태희
    Nov 20 at 15:12






  • 1




    Can you post the output of dput(data2), or if its too long dput(head(data2)) into the question?
    – jay.sf
    Nov 20 at 15:14










  • I modified the edit.
    – 차태희
    Nov 20 at 15:31






  • 1




    Better. But we cannot reproduce "C:\Users\Taehee Cha\Desktop\\data\EUCall.csv". You should provide stockdata too. Probably you should consider How to make a great reproducible example, thanks.
    – jay.sf
    Nov 20 at 15:47














0












0








0







I want to compute dynamic conditional correlation(dcc) mean matrix at all time.
Rho is each day matrix.
but i want to make a mean matrix all day (not each day)



this is DCC-garch model.



library(rugarch)
library(rmgarch)
library(xts)
stockdata<-read.zoo("C:\Users\Taehee Cha\Desktop\\data\EUCall.csv",
header=TRUE,
sep=",",
format = "%Y-%m-%d",
nrow=4433)
stock_xts<-as.xts(stockdata,dateFormat='POSIXct')

DKOSPI200 <-diff(log(stock_xts$KOSPI200))*100
DDAX30 <-diff(log(stock_xts$DAX30))*100
DSNP500 <-diff(log(stock_xts$SNP500))*100
DFTSE100 <-diff(log(stock_xts$FTSE100))*100
...
data2<-data.frame(DKOSPI200,DDAX30,DSNP500,DFTSE100,DEUROSTOXX50,DFTSEMIB,DNIKKEI225,DSNPTSX,DCAC40,DJSE40,
DRTS,DIPC,DBOVESPA,DTadawul,DMERV,DSENSEX,DJSX,DSSE,DXU100,DSNPASX,
DATHEX,DAEX,DOBX,DSNPNZ50,DTAIEX,DOMXC20,DKLCI,DBEL20,DOMXS30,DSMI,
DIBEX,DSTI,DADX,DISEQ,DATX,DTA35,DEGX30,DPX50,DIPSA,DQE,
DIGBC,DSET,DKarachi100,DSNPBVL,DPSI20,DWIG20,DOMXH25,DPSEI,DBUX,DHANGSENG)


Univarate GARCH specification



gjrGARCH.spec <-ugarchspec(variance.model=list(model="gjrGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(1,0)))


Multivarate GARCH specification



dcc.gjrGARCH.spec=dccspec(uspec=multispec(replicate(50,gjrGARCH.spec)),
dccOrder=c(1,1),
distribution="mvnorm")
OUTCOME=dccfit(dcc.gjrGARCH.spec, data=data2)
Fit<-fitted(OUTCOME)
Sigma<-sigma(OUTCOME)
Rho<-rcor(OUTCOME)

dim(Rho)
>50 50 4432


I tried this, but I failed.



dccmean<-apply(Rho, c(1:4432), mean)


Error message:



Error in if (d2 == 0L) { : missing value where TRUE/FALSE needed


please help me....



> dput(head(data2))



structure(list(KOSPI200 = c(-0.64107155376405, -2.63428514277591, 
-3.02361881202007, -0.348129159251176, -0.8463497185911, 0.933495693605124
), DAX30 = c(-0.275158289647415, -2.31165589473132, 0.132288230298805,
-0.916302412003311, -0.249954511741102, 1.5067409708557), SNP500 = c(0,
-1.23978129442266, -2.37787312356224, 0.68553903957973, -1.45026278352685,
-0.113477591886735), FTSE100 = c(-0.912643889420117, -1.27612498082748,
-0.189622000351441, -0.0175554735125871, -1.40042215908522, 1.65029716900129
), EUROSTOXX50 = c(-0.693995680230763, -2.63873467285407, 0.0340923169277474,
-1.10692637764913, -1.45688992650648, 0.90690109636018), FTSEMIB = c(-0.207307997135331,
-2.20987523065315, 0.11929602916414, -0.591164923299203, -1.23334692081265,
0.0674451667508791), NIKKEI225 = c(-0.172132904979705, -2.41825620786038,
-0.541031623946608, 0.494946220458736, -2.43002026761108, 3.30050037277818
), SNPTSX = c(-0.228827286223954, -0.618158165738869, -1.163192751949,
0.611234081963197, -1.07887096999253, 0.15982056970163), CAC40 = c(-0.996225333005363,
-2.45923020374033, 0.558708030675348, -1.07932737047562, -1.18770661796788,
0.946736097241008), JSE40 = c(-1.24801019778307, -0.660388491185593,
-0.378077731086712, 1.12913917165454, -0.270357667812782, 0.925230160391344
), RTS = c(1.69252595201295, -2.47912051247043, -1.68278329224893,
-0.628193976078784, -5.81832854668214, 2.33324601133127), IPC = c(0.410660821053099,
-0.793221688816637, -1.46058560736098, -0.0995162816563422, 0.0582618177329408,
-2.24304020680233), BOVESPA = c(-2.08399544316435, -0.0640501036023977,
-1.00884481719454, 0, -2.45326225130107, 1.76775969319749), Tadawul = c(-0.0751612871260576,
1.06988441714364, 0.467558379080923, 0.015629948658713, -0.479468927554549,
0.115645625170213), MERV = c(-0.812834284218145, -3.48526114996641,
-0.789176542098158, 0, -6.3347627637631, -2.25802417775345),
SENSEX = c(0.173466860804083, -0.357822108056638, -0.45387164272519,
1.1318914393021, 1.4301129114795, 2.24172363852979), JSX = c(0.464645515331874,
0.433624214120076, 0.382746462253802, 0.245017602482989,
0.417626097951018, 0.919117215344212), SSE = c(-0.9304947624722,
-0.512019911931727, -0.0399062163143782, 0.923519675548068,
-0.965701174169897, -0.149922817153048), XU100 = c(0.83997183599358,
-9.44220433432204, -1.19486088286003, -5.93037167728525,
-8.13019316543659, 4.39805147087551), SNPASX = c(-1.52481837941529,
-0.710076219124112, -0.355441763724151, 0.43889183264465,
0.632546988595983, 0.431277069387725), ATHEX = c(0.217251999604962,
-0.113093185749946, -4.08702446400842, -1.49759637062132,
-2.89449541976028, 2.84821759239637), AEX = c(-0.302724751872496,
-1.93350674725812, -0.334531789971226, -0.27844233175518,
-1.47467944242914, 0.59320521917563), OBX = c(-0.633345799178109,
-0.0872437271016935, -0.0686020794624653, -0.751459482064121,
-0.314782430663918, -0.138818800687446), SNPNZ50 = c(-0.589289243578772,
-0.212470628567818, -1.09525597597484, 1.56062961309287,
-0.594970797797778, 0.308439154148132), TAIEX = c(-0.634186259073921,
-0.0465155309724352, -1.06170058328026, -0.875355087660168,
-1.4930992055346, 1.85698166429091), OMXC20 = c(0.0415607672345608,
-0.892547743122307, 0.895744009882993, 0.00639222705407505,
-0.515886239547392, -0.744864387047794), KLCI = c(3.12710622798287,
1.55475618644338, 0.141888091655584, -0.2344629562125, -1.32130772048118,
-1.3324408754646), BEL20 = c(0.916239489510673, -0.838871120292239,
-0.349848101836958, 0.131119279926573, -0.220949965581685,
0.925072128183135), OMXS30 = c(-2.30694346428235, -3.59314374436401,
-0.132526843920378, -0.26558175544098, -0.700219536449254,
2.21356560948696), SMI = c(-0.923178651961543, -1.9888683347407,
0.190440901601185, -1.31581319814948, -1.24166996356809,
1.74938111396603), IBEX = c(-1.10228247337272, -3.30519689438287,
0.28541077977593, -0.719194686241131, -2.37890150982238,
-1.20979032592885), STI = c(-0.376825693193794, -1.56959227075815,
-0.209405887533087, 1.59189359203387, -0.998471722830718,
0.524545937488519), ADX = c(0, 0.234110707042312, -0.140988509294804,
-0.107833632972643, -0.00392341494084292, 0), ISEQ = c(-0.497210204416199,
-1.28827940816549, 1.05427460869301, 0.691923594974142, -1.2985333059083,
1.05885040639215), ATX = c(0.196176688098504, -0.397720264421864,
0.765032409498989, 0.634860192671294, -0.718109388684507,
0.288191756274081), TA35 = c(-0.467643907976623, -1.6933214269244,
0.638360404963567, 1.66873087937374, -1.03207784150818, 1.98476257832283
), EGX30 = c(-1.60808620054533, 0.486603179063838, 0.042060989053283,
-0.582335360174024, -1.05485347621963, 0.329916835288824),
PX50 = c(0, 0, -1.53717800478548, -0.567132576686191, -1.79645549752987,
0.100654261140143), IPSA = c(0.561439712306022, 0.849792667039129,
-0.327031029818503, -0.154168073702365, -0.737696755949457,
-0.476817106576277), QE = c(0.124155575561335, -0.299696872832733,
-0.087886339332055, 0.0366286953290995, 0.109805655043083,
0.0585137524009127), IGBC = c(0.151884596926966, -0.461362987666014,
1.12811837108895, 0.0931901841028981, 0.149517561508272,
0.312176099410877), SET = c(-0.475964725298805, 0, -0.126280143061397,
-0.243770852799319, -3.47030045650181, 0.752026997121558),
Karachi100 = c(-1.2595250361283, -1.09859841657665, -0.467295948347779,
-0.176282035250352, 1.06144685237481, 0.614077017080827),
SNPBVL = c(-0.0916272845215893, -0.488603970907153, -0.635609686024718,
0.72544080956467, -1.05989054433602, -0.290056131898186),
PSI20 = c(-0.498150623441695, -2.4995090145449, -0.916173928749231,
0.134620833204835, -1.96674118284665, 0.125363501017972),
WIG20 = c(-0.186154209522993, 2.29090171954054, -1.21234613135197,
-2.35741884661973, -1.39537944100319, 4.04050146384076),
OMXH25 = c(-0.734161177012371, -3.2781107280087, -0.274240630336653,
0.164265778301331, -2.88555610228327, 0.0196123710402674),
PSEI = c(1.16491407781849, -0.379401344663943, 0.604503127264966,
-0.551543468404248, -0.542372265371061, 0.668217806598204
), BUX = c(0.745432319945749, -0.407296683745706, 1.4847908668413,
-1.73656177766137, -1.70838647119353, 0.642365839539494),
HANGSENG = c(-1.58777648289217, 0, -2.40414908704771, 0.182801734695737,
-1.47377260414583, 1.05050572830176)), row.names = c("2001-07-05",
"2001-07-06", "2001-07-09", "2001-07-10", "2001-07-11", "2001-07-12"
), class = "data.frame")


I think it will be more useful to solve my problem.



dim(Rho)
>50 50 4432

> dput(head(Rho))
c(1, 0.28274756492168, 0.366762864615763, 0.287187938929745,
0.279313675150249, 0.25099353597608)

> str(Rho)
num [1:50, 1:50, 1:4432] 1 0.283 0.367 0.287 0.279 ...
- attr(*, "dimnames")=List of 3
..$ : chr [1:50] "KOSPI200" "DAX30" "SNP500" "FTSE100" ...
..$ : chr [1:50] "KOSPI200" "DAX30" "SNP500" "FTSE100" ...
..$ : chr [1:4432] "2001-07-05" "2001-07-06" "2001-07-09" "2001-07-10" ...


My questions



#, , "2001-07-05"

# KOSPI200 DAX30 SNP500 FTSE100
#KOSPI200 1 5 9 13
#DAX30 2 6 10 14
#SNP500 3 7 11 15
#FTSE100 4 8 12 16

#, , "2001-07-06"

# KOSPI200 DAX30 SNP500 FTSE100
#KOSPI200 1 5 9 13
#DAX30 2 6 10 14
#SNP500 3 7 11 15
#FTSE100 4 8 12 16

##----->I want to this ((ex)sum)

#, ,

# KOSPI200 DAX30 SNP500 FTSE100
#KOSPI200 2 10 18 26
#DAX30 4 12 20 28
#SNP500 6 14 22 30
#FTSE100 8 16 24 32









share|improve this question















I want to compute dynamic conditional correlation(dcc) mean matrix at all time.
Rho is each day matrix.
but i want to make a mean matrix all day (not each day)



this is DCC-garch model.



library(rugarch)
library(rmgarch)
library(xts)
stockdata<-read.zoo("C:\Users\Taehee Cha\Desktop\\data\EUCall.csv",
header=TRUE,
sep=",",
format = "%Y-%m-%d",
nrow=4433)
stock_xts<-as.xts(stockdata,dateFormat='POSIXct')

DKOSPI200 <-diff(log(stock_xts$KOSPI200))*100
DDAX30 <-diff(log(stock_xts$DAX30))*100
DSNP500 <-diff(log(stock_xts$SNP500))*100
DFTSE100 <-diff(log(stock_xts$FTSE100))*100
...
data2<-data.frame(DKOSPI200,DDAX30,DSNP500,DFTSE100,DEUROSTOXX50,DFTSEMIB,DNIKKEI225,DSNPTSX,DCAC40,DJSE40,
DRTS,DIPC,DBOVESPA,DTadawul,DMERV,DSENSEX,DJSX,DSSE,DXU100,DSNPASX,
DATHEX,DAEX,DOBX,DSNPNZ50,DTAIEX,DOMXC20,DKLCI,DBEL20,DOMXS30,DSMI,
DIBEX,DSTI,DADX,DISEQ,DATX,DTA35,DEGX30,DPX50,DIPSA,DQE,
DIGBC,DSET,DKarachi100,DSNPBVL,DPSI20,DWIG20,DOMXH25,DPSEI,DBUX,DHANGSENG)


Univarate GARCH specification



gjrGARCH.spec <-ugarchspec(variance.model=list(model="gjrGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(1,0)))


Multivarate GARCH specification



dcc.gjrGARCH.spec=dccspec(uspec=multispec(replicate(50,gjrGARCH.spec)),
dccOrder=c(1,1),
distribution="mvnorm")
OUTCOME=dccfit(dcc.gjrGARCH.spec, data=data2)
Fit<-fitted(OUTCOME)
Sigma<-sigma(OUTCOME)
Rho<-rcor(OUTCOME)

dim(Rho)
>50 50 4432


I tried this, but I failed.



dccmean<-apply(Rho, c(1:4432), mean)


Error message:



Error in if (d2 == 0L) { : missing value where TRUE/FALSE needed


please help me....



> dput(head(data2))



structure(list(KOSPI200 = c(-0.64107155376405, -2.63428514277591, 
-3.02361881202007, -0.348129159251176, -0.8463497185911, 0.933495693605124
), DAX30 = c(-0.275158289647415, -2.31165589473132, 0.132288230298805,
-0.916302412003311, -0.249954511741102, 1.5067409708557), SNP500 = c(0,
-1.23978129442266, -2.37787312356224, 0.68553903957973, -1.45026278352685,
-0.113477591886735), FTSE100 = c(-0.912643889420117, -1.27612498082748,
-0.189622000351441, -0.0175554735125871, -1.40042215908522, 1.65029716900129
), EUROSTOXX50 = c(-0.693995680230763, -2.63873467285407, 0.0340923169277474,
-1.10692637764913, -1.45688992650648, 0.90690109636018), FTSEMIB = c(-0.207307997135331,
-2.20987523065315, 0.11929602916414, -0.591164923299203, -1.23334692081265,
0.0674451667508791), NIKKEI225 = c(-0.172132904979705, -2.41825620786038,
-0.541031623946608, 0.494946220458736, -2.43002026761108, 3.30050037277818
), SNPTSX = c(-0.228827286223954, -0.618158165738869, -1.163192751949,
0.611234081963197, -1.07887096999253, 0.15982056970163), CAC40 = c(-0.996225333005363,
-2.45923020374033, 0.558708030675348, -1.07932737047562, -1.18770661796788,
0.946736097241008), JSE40 = c(-1.24801019778307, -0.660388491185593,
-0.378077731086712, 1.12913917165454, -0.270357667812782, 0.925230160391344
), RTS = c(1.69252595201295, -2.47912051247043, -1.68278329224893,
-0.628193976078784, -5.81832854668214, 2.33324601133127), IPC = c(0.410660821053099,
-0.793221688816637, -1.46058560736098, -0.0995162816563422, 0.0582618177329408,
-2.24304020680233), BOVESPA = c(-2.08399544316435, -0.0640501036023977,
-1.00884481719454, 0, -2.45326225130107, 1.76775969319749), Tadawul = c(-0.0751612871260576,
1.06988441714364, 0.467558379080923, 0.015629948658713, -0.479468927554549,
0.115645625170213), MERV = c(-0.812834284218145, -3.48526114996641,
-0.789176542098158, 0, -6.3347627637631, -2.25802417775345),
SENSEX = c(0.173466860804083, -0.357822108056638, -0.45387164272519,
1.1318914393021, 1.4301129114795, 2.24172363852979), JSX = c(0.464645515331874,
0.433624214120076, 0.382746462253802, 0.245017602482989,
0.417626097951018, 0.919117215344212), SSE = c(-0.9304947624722,
-0.512019911931727, -0.0399062163143782, 0.923519675548068,
-0.965701174169897, -0.149922817153048), XU100 = c(0.83997183599358,
-9.44220433432204, -1.19486088286003, -5.93037167728525,
-8.13019316543659, 4.39805147087551), SNPASX = c(-1.52481837941529,
-0.710076219124112, -0.355441763724151, 0.43889183264465,
0.632546988595983, 0.431277069387725), ATHEX = c(0.217251999604962,
-0.113093185749946, -4.08702446400842, -1.49759637062132,
-2.89449541976028, 2.84821759239637), AEX = c(-0.302724751872496,
-1.93350674725812, -0.334531789971226, -0.27844233175518,
-1.47467944242914, 0.59320521917563), OBX = c(-0.633345799178109,
-0.0872437271016935, -0.0686020794624653, -0.751459482064121,
-0.314782430663918, -0.138818800687446), SNPNZ50 = c(-0.589289243578772,
-0.212470628567818, -1.09525597597484, 1.56062961309287,
-0.594970797797778, 0.308439154148132), TAIEX = c(-0.634186259073921,
-0.0465155309724352, -1.06170058328026, -0.875355087660168,
-1.4930992055346, 1.85698166429091), OMXC20 = c(0.0415607672345608,
-0.892547743122307, 0.895744009882993, 0.00639222705407505,
-0.515886239547392, -0.744864387047794), KLCI = c(3.12710622798287,
1.55475618644338, 0.141888091655584, -0.2344629562125, -1.32130772048118,
-1.3324408754646), BEL20 = c(0.916239489510673, -0.838871120292239,
-0.349848101836958, 0.131119279926573, -0.220949965581685,
0.925072128183135), OMXS30 = c(-2.30694346428235, -3.59314374436401,
-0.132526843920378, -0.26558175544098, -0.700219536449254,
2.21356560948696), SMI = c(-0.923178651961543, -1.9888683347407,
0.190440901601185, -1.31581319814948, -1.24166996356809,
1.74938111396603), IBEX = c(-1.10228247337272, -3.30519689438287,
0.28541077977593, -0.719194686241131, -2.37890150982238,
-1.20979032592885), STI = c(-0.376825693193794, -1.56959227075815,
-0.209405887533087, 1.59189359203387, -0.998471722830718,
0.524545937488519), ADX = c(0, 0.234110707042312, -0.140988509294804,
-0.107833632972643, -0.00392341494084292, 0), ISEQ = c(-0.497210204416199,
-1.28827940816549, 1.05427460869301, 0.691923594974142, -1.2985333059083,
1.05885040639215), ATX = c(0.196176688098504, -0.397720264421864,
0.765032409498989, 0.634860192671294, -0.718109388684507,
0.288191756274081), TA35 = c(-0.467643907976623, -1.6933214269244,
0.638360404963567, 1.66873087937374, -1.03207784150818, 1.98476257832283
), EGX30 = c(-1.60808620054533, 0.486603179063838, 0.042060989053283,
-0.582335360174024, -1.05485347621963, 0.329916835288824),
PX50 = c(0, 0, -1.53717800478548, -0.567132576686191, -1.79645549752987,
0.100654261140143), IPSA = c(0.561439712306022, 0.849792667039129,
-0.327031029818503, -0.154168073702365, -0.737696755949457,
-0.476817106576277), QE = c(0.124155575561335, -0.299696872832733,
-0.087886339332055, 0.0366286953290995, 0.109805655043083,
0.0585137524009127), IGBC = c(0.151884596926966, -0.461362987666014,
1.12811837108895, 0.0931901841028981, 0.149517561508272,
0.312176099410877), SET = c(-0.475964725298805, 0, -0.126280143061397,
-0.243770852799319, -3.47030045650181, 0.752026997121558),
Karachi100 = c(-1.2595250361283, -1.09859841657665, -0.467295948347779,
-0.176282035250352, 1.06144685237481, 0.614077017080827),
SNPBVL = c(-0.0916272845215893, -0.488603970907153, -0.635609686024718,
0.72544080956467, -1.05989054433602, -0.290056131898186),
PSI20 = c(-0.498150623441695, -2.4995090145449, -0.916173928749231,
0.134620833204835, -1.96674118284665, 0.125363501017972),
WIG20 = c(-0.186154209522993, 2.29090171954054, -1.21234613135197,
-2.35741884661973, -1.39537944100319, 4.04050146384076),
OMXH25 = c(-0.734161177012371, -3.2781107280087, -0.274240630336653,
0.164265778301331, -2.88555610228327, 0.0196123710402674),
PSEI = c(1.16491407781849, -0.379401344663943, 0.604503127264966,
-0.551543468404248, -0.542372265371061, 0.668217806598204
), BUX = c(0.745432319945749, -0.407296683745706, 1.4847908668413,
-1.73656177766137, -1.70838647119353, 0.642365839539494),
HANGSENG = c(-1.58777648289217, 0, -2.40414908704771, 0.182801734695737,
-1.47377260414583, 1.05050572830176)), row.names = c("2001-07-05",
"2001-07-06", "2001-07-09", "2001-07-10", "2001-07-11", "2001-07-12"
), class = "data.frame")


I think it will be more useful to solve my problem.



dim(Rho)
>50 50 4432

> dput(head(Rho))
c(1, 0.28274756492168, 0.366762864615763, 0.287187938929745,
0.279313675150249, 0.25099353597608)

> str(Rho)
num [1:50, 1:50, 1:4432] 1 0.283 0.367 0.287 0.279 ...
- attr(*, "dimnames")=List of 3
..$ : chr [1:50] "KOSPI200" "DAX30" "SNP500" "FTSE100" ...
..$ : chr [1:50] "KOSPI200" "DAX30" "SNP500" "FTSE100" ...
..$ : chr [1:4432] "2001-07-05" "2001-07-06" "2001-07-09" "2001-07-10" ...


My questions



#, , "2001-07-05"

# KOSPI200 DAX30 SNP500 FTSE100
#KOSPI200 1 5 9 13
#DAX30 2 6 10 14
#SNP500 3 7 11 15
#FTSE100 4 8 12 16

#, , "2001-07-06"

# KOSPI200 DAX30 SNP500 FTSE100
#KOSPI200 1 5 9 13
#DAX30 2 6 10 14
#SNP500 3 7 11 15
#FTSE100 4 8 12 16

##----->I want to this ((ex)sum)

#, ,

# KOSPI200 DAX30 SNP500 FTSE100
#KOSPI200 2 10 18 26
#DAX30 4 12 20 28
#SNP500 6 14 22 30
#FTSE100 8 16 24 32






r multidimensional-array apply mean correlation






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 21 at 7:59

























asked Nov 20 at 13:24









차태희

62




62








  • 1




    Please specify the used libraries and provide data2.
    – jay.sf
    Nov 20 at 13:41






  • 1




    data2 is difference time data.
    – 차태희
    Nov 20 at 15:12






  • 1




    Can you post the output of dput(data2), or if its too long dput(head(data2)) into the question?
    – jay.sf
    Nov 20 at 15:14










  • I modified the edit.
    – 차태희
    Nov 20 at 15:31






  • 1




    Better. But we cannot reproduce "C:\Users\Taehee Cha\Desktop\\data\EUCall.csv". You should provide stockdata too. Probably you should consider How to make a great reproducible example, thanks.
    – jay.sf
    Nov 20 at 15:47














  • 1




    Please specify the used libraries and provide data2.
    – jay.sf
    Nov 20 at 13:41






  • 1




    data2 is difference time data.
    – 차태희
    Nov 20 at 15:12






  • 1




    Can you post the output of dput(data2), or if its too long dput(head(data2)) into the question?
    – jay.sf
    Nov 20 at 15:14










  • I modified the edit.
    – 차태희
    Nov 20 at 15:31






  • 1




    Better. But we cannot reproduce "C:\Users\Taehee Cha\Desktop\\data\EUCall.csv". You should provide stockdata too. Probably you should consider How to make a great reproducible example, thanks.
    – jay.sf
    Nov 20 at 15:47








1




1




Please specify the used libraries and provide data2.
– jay.sf
Nov 20 at 13:41




Please specify the used libraries and provide data2.
– jay.sf
Nov 20 at 13:41




1




1




data2 is difference time data.
– 차태희
Nov 20 at 15:12




data2 is difference time data.
– 차태희
Nov 20 at 15:12




1




1




Can you post the output of dput(data2), or if its too long dput(head(data2)) into the question?
– jay.sf
Nov 20 at 15:14




Can you post the output of dput(data2), or if its too long dput(head(data2)) into the question?
– jay.sf
Nov 20 at 15:14












I modified the edit.
– 차태희
Nov 20 at 15:31




I modified the edit.
– 차태희
Nov 20 at 15:31




1




1




Better. But we cannot reproduce "C:\Users\Taehee Cha\Desktop\\data\EUCall.csv". You should provide stockdata too. Probably you should consider How to make a great reproducible example, thanks.
– jay.sf
Nov 20 at 15:47




Better. But we cannot reproduce "C:\Users\Taehee Cha\Desktop\\data\EUCall.csv". You should provide stockdata too. Probably you should consider How to make a great reproducible example, thanks.
– jay.sf
Nov 20 at 15:47












1 Answer
1






active

oldest

votes


















1














The error of your code is in the MARGIN of your apply call. Do not use c(1:4412), use the actual margins which are the first and second dimension (hence c(1,2))



In the last example of your question:



day1 <- matrix(1:16, 4, 4, dimnames = list(letters[1:4], LETTERS[1:4]))
day2 <- matrix(1:16, 4, 4, dimnames = list(letters[1:4], LETTERS[1:4]))

Rho <- abind::abind(day1=day1,day2=day2, along = 3)

apply(Rho, c(1,2), sum)
A B C D
a 2 10 18 26
b 4 12 20 28
c 6 14 22 30
d 8 16 24 32


gives the wanted output.






share|improve this answer





















    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53393987%2fhow-can-i-compute-multi-dimension-mean-matrix%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    The error of your code is in the MARGIN of your apply call. Do not use c(1:4412), use the actual margins which are the first and second dimension (hence c(1,2))



    In the last example of your question:



    day1 <- matrix(1:16, 4, 4, dimnames = list(letters[1:4], LETTERS[1:4]))
    day2 <- matrix(1:16, 4, 4, dimnames = list(letters[1:4], LETTERS[1:4]))

    Rho <- abind::abind(day1=day1,day2=day2, along = 3)

    apply(Rho, c(1,2), sum)
    A B C D
    a 2 10 18 26
    b 4 12 20 28
    c 6 14 22 30
    d 8 16 24 32


    gives the wanted output.






    share|improve this answer


























      1














      The error of your code is in the MARGIN of your apply call. Do not use c(1:4412), use the actual margins which are the first and second dimension (hence c(1,2))



      In the last example of your question:



      day1 <- matrix(1:16, 4, 4, dimnames = list(letters[1:4], LETTERS[1:4]))
      day2 <- matrix(1:16, 4, 4, dimnames = list(letters[1:4], LETTERS[1:4]))

      Rho <- abind::abind(day1=day1,day2=day2, along = 3)

      apply(Rho, c(1,2), sum)
      A B C D
      a 2 10 18 26
      b 4 12 20 28
      c 6 14 22 30
      d 8 16 24 32


      gives the wanted output.






      share|improve this answer
























        1












        1








        1






        The error of your code is in the MARGIN of your apply call. Do not use c(1:4412), use the actual margins which are the first and second dimension (hence c(1,2))



        In the last example of your question:



        day1 <- matrix(1:16, 4, 4, dimnames = list(letters[1:4], LETTERS[1:4]))
        day2 <- matrix(1:16, 4, 4, dimnames = list(letters[1:4], LETTERS[1:4]))

        Rho <- abind::abind(day1=day1,day2=day2, along = 3)

        apply(Rho, c(1,2), sum)
        A B C D
        a 2 10 18 26
        b 4 12 20 28
        c 6 14 22 30
        d 8 16 24 32


        gives the wanted output.






        share|improve this answer












        The error of your code is in the MARGIN of your apply call. Do not use c(1:4412), use the actual margins which are the first and second dimension (hence c(1,2))



        In the last example of your question:



        day1 <- matrix(1:16, 4, 4, dimnames = list(letters[1:4], LETTERS[1:4]))
        day2 <- matrix(1:16, 4, 4, dimnames = list(letters[1:4], LETTERS[1:4]))

        Rho <- abind::abind(day1=day1,day2=day2, along = 3)

        apply(Rho, c(1,2), sum)
        A B C D
        a 2 10 18 26
        b 4 12 20 28
        c 6 14 22 30
        d 8 16 24 32


        gives the wanted output.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 21 at 18:13









        Bastien

        1,391720




        1,391720






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53393987%2fhow-can-i-compute-multi-dimension-mean-matrix%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Costa Masnaga

            Fotorealismo

            Sidney Franklin