Do similar matrices have same characteristic equations?












2












$begingroup$


Since similar matrices have same eigenvalues and characteristic polynomials, then they must have the same characteristic equation, right?










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Since similar matrices have same eigenvalues and characteristic polynomials, then they must have the same characteristic equation, right?










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Since similar matrices have same eigenvalues and characteristic polynomials, then they must have the same characteristic equation, right?










      share|cite|improve this question









      $endgroup$




      Since similar matrices have same eigenvalues and characteristic polynomials, then they must have the same characteristic equation, right?







      linear-algebra






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 hours ago









      Samurai BaleSamurai Bale

      503




      503






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Suppose $A$ and $B$ are square matrices such that $A = P B P^{-1}$ for some invertible matrix $P$. Then
          begin{align*}text{charpoly}(A,t) & = det(A - tI)\
          & = det(PBP^{-1} - tI)\
          & = det(PBP^{-1}-tPP^{-1})\
          & = det(P(B-tI)P^{-1})\
          & = det(P)det(B - tI) det(P^{-1})\
          & = det(P)det(B - tI) frac{1}{det(P)}\
          & = det(B-tI)\
          & = text{charpoly}(B,t).
          end{align*}



          This shows that similar matrices have the same characteristic polynomial. Note that this proof relies on several facts. In particular, the determinant is multiplicative.






          share|cite|improve this answer











          $endgroup$





















            2












            $begingroup$

            Note that $det (lambda I -A) = det S det (lambda I -A) det S^{-1} = det (lambda I - S A S^{-1})$.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142004%2fdo-similar-matrices-have-same-characteristic-equations%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              Suppose $A$ and $B$ are square matrices such that $A = P B P^{-1}$ for some invertible matrix $P$. Then
              begin{align*}text{charpoly}(A,t) & = det(A - tI)\
              & = det(PBP^{-1} - tI)\
              & = det(PBP^{-1}-tPP^{-1})\
              & = det(P(B-tI)P^{-1})\
              & = det(P)det(B - tI) det(P^{-1})\
              & = det(P)det(B - tI) frac{1}{det(P)}\
              & = det(B-tI)\
              & = text{charpoly}(B,t).
              end{align*}



              This shows that similar matrices have the same characteristic polynomial. Note that this proof relies on several facts. In particular, the determinant is multiplicative.






              share|cite|improve this answer











              $endgroup$


















                3












                $begingroup$

                Suppose $A$ and $B$ are square matrices such that $A = P B P^{-1}$ for some invertible matrix $P$. Then
                begin{align*}text{charpoly}(A,t) & = det(A - tI)\
                & = det(PBP^{-1} - tI)\
                & = det(PBP^{-1}-tPP^{-1})\
                & = det(P(B-tI)P^{-1})\
                & = det(P)det(B - tI) det(P^{-1})\
                & = det(P)det(B - tI) frac{1}{det(P)}\
                & = det(B-tI)\
                & = text{charpoly}(B,t).
                end{align*}



                This shows that similar matrices have the same characteristic polynomial. Note that this proof relies on several facts. In particular, the determinant is multiplicative.






                share|cite|improve this answer











                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  Suppose $A$ and $B$ are square matrices such that $A = P B P^{-1}$ for some invertible matrix $P$. Then
                  begin{align*}text{charpoly}(A,t) & = det(A - tI)\
                  & = det(PBP^{-1} - tI)\
                  & = det(PBP^{-1}-tPP^{-1})\
                  & = det(P(B-tI)P^{-1})\
                  & = det(P)det(B - tI) det(P^{-1})\
                  & = det(P)det(B - tI) frac{1}{det(P)}\
                  & = det(B-tI)\
                  & = text{charpoly}(B,t).
                  end{align*}



                  This shows that similar matrices have the same characteristic polynomial. Note that this proof relies on several facts. In particular, the determinant is multiplicative.






                  share|cite|improve this answer











                  $endgroup$



                  Suppose $A$ and $B$ are square matrices such that $A = P B P^{-1}$ for some invertible matrix $P$. Then
                  begin{align*}text{charpoly}(A,t) & = det(A - tI)\
                  & = det(PBP^{-1} - tI)\
                  & = det(PBP^{-1}-tPP^{-1})\
                  & = det(P(B-tI)P^{-1})\
                  & = det(P)det(B - tI) det(P^{-1})\
                  & = det(P)det(B - tI) frac{1}{det(P)}\
                  & = det(B-tI)\
                  & = text{charpoly}(B,t).
                  end{align*}



                  This shows that similar matrices have the same characteristic polynomial. Note that this proof relies on several facts. In particular, the determinant is multiplicative.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 1 hour ago









                  J. W. Tanner

                  2,9541318




                  2,9541318










                  answered 1 hour ago









                  johnny133253johnny133253

                  384110




                  384110























                      2












                      $begingroup$

                      Note that $det (lambda I -A) = det S det (lambda I -A) det S^{-1} = det (lambda I - S A S^{-1})$.






                      share|cite|improve this answer









                      $endgroup$


















                        2












                        $begingroup$

                        Note that $det (lambda I -A) = det S det (lambda I -A) det S^{-1} = det (lambda I - S A S^{-1})$.






                        share|cite|improve this answer









                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          Note that $det (lambda I -A) = det S det (lambda I -A) det S^{-1} = det (lambda I - S A S^{-1})$.






                          share|cite|improve this answer









                          $endgroup$



                          Note that $det (lambda I -A) = det S det (lambda I -A) det S^{-1} = det (lambda I - S A S^{-1})$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 2 hours ago









                          copper.hatcopper.hat

                          127k559160




                          127k559160






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142004%2fdo-similar-matrices-have-same-characteristic-equations%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Costa Masnaga

                              Fotorealismo

                              Sidney Franklin