Shutting down all lamps with minimum number of switch presses












0












$begingroup$


I found an optimization problem. The following is an example case.




I have n=120 lamps in a circle, and enumerated by L1,…,L120. Some of
them are switched on and some of them are switched off. I also have
been given a positive integer m=7. One every turn I choose one lamp Li
and then the lamps Li−m,…,Li+m will change their state, I mean if lamp
Lj was turned off then now it is turned on and vice versa. Indexes are
modulo n so the lamps L118,L119,L1,L2 are consecutive.



What is the minimum number of turns to shut off all lamps and which
switches one must press, if the initial states of the lamps are (from
L1 to L120)



1010110110000100000101011001011111010111
1010011101001100000010001010011010110000
0000100110010100010010110111000000010110


The list of cases is as follows:



B       6               1               101101
--------------------------------------------------------------------------------
C 10 2 1011010110
--------------------------------------------------------------------------------
D 20 1 11111011101010111111
--------------------------------------------------------------------------------
E 30 7 011100001010011011100001010011
--------------------------------------------------------------------------------
F 39 6 110100111111101000011000100110111100010
--------------------------------------------------------------------------------
G 53 9 0101100101111100100011100111101001001010
0010000010110
--------------------------------------------------------------------------------
H 120 7 1010110110000100000101011001011111010111
1010011101001100000010001010011010110000
0000100110010100010010110111000000010110
--------------------------------------------------------------------------------
I 220 27 1110111111101000100110011001100110100000
0010100011000111101100111111000001010000
1010110110011100100010011011010111100011
0101101000010000100110111101001001011010
1101001001110110001100011010111101001100
11010111110101010100
--------------------------------------------------------------------------------
J 500 87 1010001101101001110001101001000101010100
0001111111001101011000000011001111111011
1001110011010111111011010100010011011001
1001101110011011100001000111110101011111
1100111100001100110011101110101100001111
1100010010011010001111000000101110101101
1010100001100011111000111001000101101000
1011111111101111000000011111010001000000
1110011110111101010010011000000100010100
0011101011010011010110011110111000010010
0111100100011010010110001000011100101001
1110111010001001011001111011111011010110
10101101111011101110
--------------------------------------------------------------------------------
K 1002 83 0010100100100101000000110101111111101011
1101000101111110001110000110110110010101
1110110011011101100110111001110110010011
1101111010110011110101100001101010100011
1110001100011111110100011110100111111100
0011001011100110101100001101000001110010
0110100000100100100000011010000010111100
1110001110011110101001100111101101010000
0101010000011010011110101001001001000000
0011000100011011011001111010001101111000
0100001011010011001010111001111100110001
0011111110101101001100111101110000000000
1101100100000011000010010100010101001000
1100001000101001100110010100001000001101
1101000100001010011000101001101000100010
0011010001011101010100011101001101101100
0111110100110011001111000000001001001001
1001111001011111000010110000110010101000
1011001100111101000101000110000111010100
0010011011010111001101011001111000001011
1110101010101101111011111110100001100110
1000101100110011010000110000011011110011
0010000010000000111101101000001111101111
0100111110010101100011101001111101010000
1111100010011001110111111000101000000101
01
--------------------------------------------------------------------------------
L 2107 108 0111110100011000011111101110010101100011
1001111011101001001110111110001100011001
1001010100101011101101001000010111111111
1001101010111011110100100101000101100011
1110100010010010101110100000111100101000
0111101011111100010010110000100110100100
0100110101110010110011110010101101100111
1110010011000110110111010110010100101110
0111111101110000111001111100100010010001
1010110011000101100111111001011110101110
0111010110111110110101000101100100011000
1011000011011110001111100110100010100101
1101111100110011001110010010001010101111
1000001001000110011110010011011101110100
1011111100110010011000010110010110101010
0110101000011011110001010000010001000110
1001110101001001110110111111010011010111
1111011001000110111001000011101101110001
0000011111101000010101011111011011000011
1111000000011100010011011001011000110101
1101011111100001100010110010110011000000
0001001111100101110100100011011010011100
0000001111010101000111011000110110100001
1010110011100110111010111110110000010000
1000101001111001000110000101010000010111
1011100001000110001100010000001011101110
1001111110100010010000011000100101010101
1001001001110110101000001001001100001011
0011011100011111100111001110101101110001
0111010000010011110110011011000011101001
1111011010010000101111000010000001100110
1001011101001000010101001001011111111011
1000111000100001101100101110100011111100
1011001111101111110110101111101111011111
1001111100110101110101111110010010101101
1111111111000100100111100011101110110100
0100011011001010110100101101000000110010
0010010001001110110100011111100011111101
0100110111101101010101010100110110011011
0001111111000100000111011010101011000010
0011011110110110110100011001101111001000
1000000011110011100111100000001010010011
1000011101111100000101010101010010100101
1010001011010100011011001110110010100000
1000111101111000010111111101010110110111
0110001111100011001110000100100101001111
0000111111100010011001010000010110111000
1000110110001000001100110000001011000010
1000101101110000101100100010101111100011
1000010010111101000010000110011010000001
0010001100001000001100110111110100100111
1001100110001000100101011111001011001111
110001011111001101010101001
================================================================================



I was wondering how to solve the case I. I tried to solve it by Sage but my algorithm seems to be too slow. How can I make the program such that it finds the optimal solution and stops the computing as it find it?



Current code:



room = 
input =
m =
room.append('I')
input.append('1110111111101000100110011001100110100000001010001100011110110011111100000101000010101101100111001000100110110101111000110101101000010000100110111101001001011010110100100111011000110001101011110100110011010111110101010100')
m.append(27)
F = GF(2)
L_init = vector(F,input[0])
d = len(L_init)
M = matrix(F,d,d)
for i in range(d):
for j in range(-m[0],m[0]+1 ):
M[i,(i+j) % d] = 1
I = M.solve_right(L_init)
K = M.right_kernel()
best = None
for k in K:
A = (I+k).nonzero_positions()
B=
if len((I+k).nonzero_positions()) < best or best == None:
S = room[0] + ' '
best = len((I+k).nonzero_positions())
for i in range(len(A)):
S +=str(int(A[i])+1) + ' '
print(S)
print("Optimal:")


Output thus far:



I 1 2 4 6 8 10 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 65 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 120 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 
I 1 2 4 6 8 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 220
I 1 2 4 6 8 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176
I 1 2 4 6 8 12 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 67 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 176 178 220
I 1 2 4 6 8 12 18 19 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 70 71 72 74 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 124 126 127 128 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176 178 185









share|improve this question









New contributor




sagemathematician is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    0












    $begingroup$


    I found an optimization problem. The following is an example case.




    I have n=120 lamps in a circle, and enumerated by L1,…,L120. Some of
    them are switched on and some of them are switched off. I also have
    been given a positive integer m=7. One every turn I choose one lamp Li
    and then the lamps Li−m,…,Li+m will change their state, I mean if lamp
    Lj was turned off then now it is turned on and vice versa. Indexes are
    modulo n so the lamps L118,L119,L1,L2 are consecutive.



    What is the minimum number of turns to shut off all lamps and which
    switches one must press, if the initial states of the lamps are (from
    L1 to L120)



    1010110110000100000101011001011111010111
    1010011101001100000010001010011010110000
    0000100110010100010010110111000000010110


    The list of cases is as follows:



    B       6               1               101101
    --------------------------------------------------------------------------------
    C 10 2 1011010110
    --------------------------------------------------------------------------------
    D 20 1 11111011101010111111
    --------------------------------------------------------------------------------
    E 30 7 011100001010011011100001010011
    --------------------------------------------------------------------------------
    F 39 6 110100111111101000011000100110111100010
    --------------------------------------------------------------------------------
    G 53 9 0101100101111100100011100111101001001010
    0010000010110
    --------------------------------------------------------------------------------
    H 120 7 1010110110000100000101011001011111010111
    1010011101001100000010001010011010110000
    0000100110010100010010110111000000010110
    --------------------------------------------------------------------------------
    I 220 27 1110111111101000100110011001100110100000
    0010100011000111101100111111000001010000
    1010110110011100100010011011010111100011
    0101101000010000100110111101001001011010
    1101001001110110001100011010111101001100
    11010111110101010100
    --------------------------------------------------------------------------------
    J 500 87 1010001101101001110001101001000101010100
    0001111111001101011000000011001111111011
    1001110011010111111011010100010011011001
    1001101110011011100001000111110101011111
    1100111100001100110011101110101100001111
    1100010010011010001111000000101110101101
    1010100001100011111000111001000101101000
    1011111111101111000000011111010001000000
    1110011110111101010010011000000100010100
    0011101011010011010110011110111000010010
    0111100100011010010110001000011100101001
    1110111010001001011001111011111011010110
    10101101111011101110
    --------------------------------------------------------------------------------
    K 1002 83 0010100100100101000000110101111111101011
    1101000101111110001110000110110110010101
    1110110011011101100110111001110110010011
    1101111010110011110101100001101010100011
    1110001100011111110100011110100111111100
    0011001011100110101100001101000001110010
    0110100000100100100000011010000010111100
    1110001110011110101001100111101101010000
    0101010000011010011110101001001001000000
    0011000100011011011001111010001101111000
    0100001011010011001010111001111100110001
    0011111110101101001100111101110000000000
    1101100100000011000010010100010101001000
    1100001000101001100110010100001000001101
    1101000100001010011000101001101000100010
    0011010001011101010100011101001101101100
    0111110100110011001111000000001001001001
    1001111001011111000010110000110010101000
    1011001100111101000101000110000111010100
    0010011011010111001101011001111000001011
    1110101010101101111011111110100001100110
    1000101100110011010000110000011011110011
    0010000010000000111101101000001111101111
    0100111110010101100011101001111101010000
    1111100010011001110111111000101000000101
    01
    --------------------------------------------------------------------------------
    L 2107 108 0111110100011000011111101110010101100011
    1001111011101001001110111110001100011001
    1001010100101011101101001000010111111111
    1001101010111011110100100101000101100011
    1110100010010010101110100000111100101000
    0111101011111100010010110000100110100100
    0100110101110010110011110010101101100111
    1110010011000110110111010110010100101110
    0111111101110000111001111100100010010001
    1010110011000101100111111001011110101110
    0111010110111110110101000101100100011000
    1011000011011110001111100110100010100101
    1101111100110011001110010010001010101111
    1000001001000110011110010011011101110100
    1011111100110010011000010110010110101010
    0110101000011011110001010000010001000110
    1001110101001001110110111111010011010111
    1111011001000110111001000011101101110001
    0000011111101000010101011111011011000011
    1111000000011100010011011001011000110101
    1101011111100001100010110010110011000000
    0001001111100101110100100011011010011100
    0000001111010101000111011000110110100001
    1010110011100110111010111110110000010000
    1000101001111001000110000101010000010111
    1011100001000110001100010000001011101110
    1001111110100010010000011000100101010101
    1001001001110110101000001001001100001011
    0011011100011111100111001110101101110001
    0111010000010011110110011011000011101001
    1111011010010000101111000010000001100110
    1001011101001000010101001001011111111011
    1000111000100001101100101110100011111100
    1011001111101111110110101111101111011111
    1001111100110101110101111110010010101101
    1111111111000100100111100011101110110100
    0100011011001010110100101101000000110010
    0010010001001110110100011111100011111101
    0100110111101101010101010100110110011011
    0001111111000100000111011010101011000010
    0011011110110110110100011001101111001000
    1000000011110011100111100000001010010011
    1000011101111100000101010101010010100101
    1010001011010100011011001110110010100000
    1000111101111000010111111101010110110111
    0110001111100011001110000100100101001111
    0000111111100010011001010000010110111000
    1000110110001000001100110000001011000010
    1000101101110000101100100010101111100011
    1000010010111101000010000110011010000001
    0010001100001000001100110111110100100111
    1001100110001000100101011111001011001111
    110001011111001101010101001
    ================================================================================



    I was wondering how to solve the case I. I tried to solve it by Sage but my algorithm seems to be too slow. How can I make the program such that it finds the optimal solution and stops the computing as it find it?



    Current code:



    room = 
    input =
    m =
    room.append('I')
    input.append('1110111111101000100110011001100110100000001010001100011110110011111100000101000010101101100111001000100110110101111000110101101000010000100110111101001001011010110100100111011000110001101011110100110011010111110101010100')
    m.append(27)
    F = GF(2)
    L_init = vector(F,input[0])
    d = len(L_init)
    M = matrix(F,d,d)
    for i in range(d):
    for j in range(-m[0],m[0]+1 ):
    M[i,(i+j) % d] = 1
    I = M.solve_right(L_init)
    K = M.right_kernel()
    best = None
    for k in K:
    A = (I+k).nonzero_positions()
    B=
    if len((I+k).nonzero_positions()) < best or best == None:
    S = room[0] + ' '
    best = len((I+k).nonzero_positions())
    for i in range(len(A)):
    S +=str(int(A[i])+1) + ' '
    print(S)
    print("Optimal:")


    Output thus far:



    I 1 2 4 6 8 10 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 65 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 120 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 
    I 1 2 4 6 8 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 220
    I 1 2 4 6 8 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176
    I 1 2 4 6 8 12 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 67 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 176 178 220
    I 1 2 4 6 8 12 18 19 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 70 71 72 74 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 124 126 127 128 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176 178 185









    share|improve this question









    New contributor




    sagemathematician is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      0












      0








      0





      $begingroup$


      I found an optimization problem. The following is an example case.




      I have n=120 lamps in a circle, and enumerated by L1,…,L120. Some of
      them are switched on and some of them are switched off. I also have
      been given a positive integer m=7. One every turn I choose one lamp Li
      and then the lamps Li−m,…,Li+m will change their state, I mean if lamp
      Lj was turned off then now it is turned on and vice versa. Indexes are
      modulo n so the lamps L118,L119,L1,L2 are consecutive.



      What is the minimum number of turns to shut off all lamps and which
      switches one must press, if the initial states of the lamps are (from
      L1 to L120)



      1010110110000100000101011001011111010111
      1010011101001100000010001010011010110000
      0000100110010100010010110111000000010110


      The list of cases is as follows:



      B       6               1               101101
      --------------------------------------------------------------------------------
      C 10 2 1011010110
      --------------------------------------------------------------------------------
      D 20 1 11111011101010111111
      --------------------------------------------------------------------------------
      E 30 7 011100001010011011100001010011
      --------------------------------------------------------------------------------
      F 39 6 110100111111101000011000100110111100010
      --------------------------------------------------------------------------------
      G 53 9 0101100101111100100011100111101001001010
      0010000010110
      --------------------------------------------------------------------------------
      H 120 7 1010110110000100000101011001011111010111
      1010011101001100000010001010011010110000
      0000100110010100010010110111000000010110
      --------------------------------------------------------------------------------
      I 220 27 1110111111101000100110011001100110100000
      0010100011000111101100111111000001010000
      1010110110011100100010011011010111100011
      0101101000010000100110111101001001011010
      1101001001110110001100011010111101001100
      11010111110101010100
      --------------------------------------------------------------------------------
      J 500 87 1010001101101001110001101001000101010100
      0001111111001101011000000011001111111011
      1001110011010111111011010100010011011001
      1001101110011011100001000111110101011111
      1100111100001100110011101110101100001111
      1100010010011010001111000000101110101101
      1010100001100011111000111001000101101000
      1011111111101111000000011111010001000000
      1110011110111101010010011000000100010100
      0011101011010011010110011110111000010010
      0111100100011010010110001000011100101001
      1110111010001001011001111011111011010110
      10101101111011101110
      --------------------------------------------------------------------------------
      K 1002 83 0010100100100101000000110101111111101011
      1101000101111110001110000110110110010101
      1110110011011101100110111001110110010011
      1101111010110011110101100001101010100011
      1110001100011111110100011110100111111100
      0011001011100110101100001101000001110010
      0110100000100100100000011010000010111100
      1110001110011110101001100111101101010000
      0101010000011010011110101001001001000000
      0011000100011011011001111010001101111000
      0100001011010011001010111001111100110001
      0011111110101101001100111101110000000000
      1101100100000011000010010100010101001000
      1100001000101001100110010100001000001101
      1101000100001010011000101001101000100010
      0011010001011101010100011101001101101100
      0111110100110011001111000000001001001001
      1001111001011111000010110000110010101000
      1011001100111101000101000110000111010100
      0010011011010111001101011001111000001011
      1110101010101101111011111110100001100110
      1000101100110011010000110000011011110011
      0010000010000000111101101000001111101111
      0100111110010101100011101001111101010000
      1111100010011001110111111000101000000101
      01
      --------------------------------------------------------------------------------
      L 2107 108 0111110100011000011111101110010101100011
      1001111011101001001110111110001100011001
      1001010100101011101101001000010111111111
      1001101010111011110100100101000101100011
      1110100010010010101110100000111100101000
      0111101011111100010010110000100110100100
      0100110101110010110011110010101101100111
      1110010011000110110111010110010100101110
      0111111101110000111001111100100010010001
      1010110011000101100111111001011110101110
      0111010110111110110101000101100100011000
      1011000011011110001111100110100010100101
      1101111100110011001110010010001010101111
      1000001001000110011110010011011101110100
      1011111100110010011000010110010110101010
      0110101000011011110001010000010001000110
      1001110101001001110110111111010011010111
      1111011001000110111001000011101101110001
      0000011111101000010101011111011011000011
      1111000000011100010011011001011000110101
      1101011111100001100010110010110011000000
      0001001111100101110100100011011010011100
      0000001111010101000111011000110110100001
      1010110011100110111010111110110000010000
      1000101001111001000110000101010000010111
      1011100001000110001100010000001011101110
      1001111110100010010000011000100101010101
      1001001001110110101000001001001100001011
      0011011100011111100111001110101101110001
      0111010000010011110110011011000011101001
      1111011010010000101111000010000001100110
      1001011101001000010101001001011111111011
      1000111000100001101100101110100011111100
      1011001111101111110110101111101111011111
      1001111100110101110101111110010010101101
      1111111111000100100111100011101110110100
      0100011011001010110100101101000000110010
      0010010001001110110100011111100011111101
      0100110111101101010101010100110110011011
      0001111111000100000111011010101011000010
      0011011110110110110100011001101111001000
      1000000011110011100111100000001010010011
      1000011101111100000101010101010010100101
      1010001011010100011011001110110010100000
      1000111101111000010111111101010110110111
      0110001111100011001110000100100101001111
      0000111111100010011001010000010110111000
      1000110110001000001100110000001011000010
      1000101101110000101100100010101111100011
      1000010010111101000010000110011010000001
      0010001100001000001100110111110100100111
      1001100110001000100101011111001011001111
      110001011111001101010101001
      ================================================================================



      I was wondering how to solve the case I. I tried to solve it by Sage but my algorithm seems to be too slow. How can I make the program such that it finds the optimal solution and stops the computing as it find it?



      Current code:



      room = 
      input =
      m =
      room.append('I')
      input.append('1110111111101000100110011001100110100000001010001100011110110011111100000101000010101101100111001000100110110101111000110101101000010000100110111101001001011010110100100111011000110001101011110100110011010111110101010100')
      m.append(27)
      F = GF(2)
      L_init = vector(F,input[0])
      d = len(L_init)
      M = matrix(F,d,d)
      for i in range(d):
      for j in range(-m[0],m[0]+1 ):
      M[i,(i+j) % d] = 1
      I = M.solve_right(L_init)
      K = M.right_kernel()
      best = None
      for k in K:
      A = (I+k).nonzero_positions()
      B=
      if len((I+k).nonzero_positions()) < best or best == None:
      S = room[0] + ' '
      best = len((I+k).nonzero_positions())
      for i in range(len(A)):
      S +=str(int(A[i])+1) + ' '
      print(S)
      print("Optimal:")


      Output thus far:



      I 1 2 4 6 8 10 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 65 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 120 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 
      I 1 2 4 6 8 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 220
      I 1 2 4 6 8 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176
      I 1 2 4 6 8 12 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 67 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 176 178 220
      I 1 2 4 6 8 12 18 19 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 70 71 72 74 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 124 126 127 128 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176 178 185









      share|improve this question









      New contributor




      sagemathematician is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I found an optimization problem. The following is an example case.




      I have n=120 lamps in a circle, and enumerated by L1,…,L120. Some of
      them are switched on and some of them are switched off. I also have
      been given a positive integer m=7. One every turn I choose one lamp Li
      and then the lamps Li−m,…,Li+m will change their state, I mean if lamp
      Lj was turned off then now it is turned on and vice versa. Indexes are
      modulo n so the lamps L118,L119,L1,L2 are consecutive.



      What is the minimum number of turns to shut off all lamps and which
      switches one must press, if the initial states of the lamps are (from
      L1 to L120)



      1010110110000100000101011001011111010111
      1010011101001100000010001010011010110000
      0000100110010100010010110111000000010110


      The list of cases is as follows:



      B       6               1               101101
      --------------------------------------------------------------------------------
      C 10 2 1011010110
      --------------------------------------------------------------------------------
      D 20 1 11111011101010111111
      --------------------------------------------------------------------------------
      E 30 7 011100001010011011100001010011
      --------------------------------------------------------------------------------
      F 39 6 110100111111101000011000100110111100010
      --------------------------------------------------------------------------------
      G 53 9 0101100101111100100011100111101001001010
      0010000010110
      --------------------------------------------------------------------------------
      H 120 7 1010110110000100000101011001011111010111
      1010011101001100000010001010011010110000
      0000100110010100010010110111000000010110
      --------------------------------------------------------------------------------
      I 220 27 1110111111101000100110011001100110100000
      0010100011000111101100111111000001010000
      1010110110011100100010011011010111100011
      0101101000010000100110111101001001011010
      1101001001110110001100011010111101001100
      11010111110101010100
      --------------------------------------------------------------------------------
      J 500 87 1010001101101001110001101001000101010100
      0001111111001101011000000011001111111011
      1001110011010111111011010100010011011001
      1001101110011011100001000111110101011111
      1100111100001100110011101110101100001111
      1100010010011010001111000000101110101101
      1010100001100011111000111001000101101000
      1011111111101111000000011111010001000000
      1110011110111101010010011000000100010100
      0011101011010011010110011110111000010010
      0111100100011010010110001000011100101001
      1110111010001001011001111011111011010110
      10101101111011101110
      --------------------------------------------------------------------------------
      K 1002 83 0010100100100101000000110101111111101011
      1101000101111110001110000110110110010101
      1110110011011101100110111001110110010011
      1101111010110011110101100001101010100011
      1110001100011111110100011110100111111100
      0011001011100110101100001101000001110010
      0110100000100100100000011010000010111100
      1110001110011110101001100111101101010000
      0101010000011010011110101001001001000000
      0011000100011011011001111010001101111000
      0100001011010011001010111001111100110001
      0011111110101101001100111101110000000000
      1101100100000011000010010100010101001000
      1100001000101001100110010100001000001101
      1101000100001010011000101001101000100010
      0011010001011101010100011101001101101100
      0111110100110011001111000000001001001001
      1001111001011111000010110000110010101000
      1011001100111101000101000110000111010100
      0010011011010111001101011001111000001011
      1110101010101101111011111110100001100110
      1000101100110011010000110000011011110011
      0010000010000000111101101000001111101111
      0100111110010101100011101001111101010000
      1111100010011001110111111000101000000101
      01
      --------------------------------------------------------------------------------
      L 2107 108 0111110100011000011111101110010101100011
      1001111011101001001110111110001100011001
      1001010100101011101101001000010111111111
      1001101010111011110100100101000101100011
      1110100010010010101110100000111100101000
      0111101011111100010010110000100110100100
      0100110101110010110011110010101101100111
      1110010011000110110111010110010100101110
      0111111101110000111001111100100010010001
      1010110011000101100111111001011110101110
      0111010110111110110101000101100100011000
      1011000011011110001111100110100010100101
      1101111100110011001110010010001010101111
      1000001001000110011110010011011101110100
      1011111100110010011000010110010110101010
      0110101000011011110001010000010001000110
      1001110101001001110110111111010011010111
      1111011001000110111001000011101101110001
      0000011111101000010101011111011011000011
      1111000000011100010011011001011000110101
      1101011111100001100010110010110011000000
      0001001111100101110100100011011010011100
      0000001111010101000111011000110110100001
      1010110011100110111010111110110000010000
      1000101001111001000110000101010000010111
      1011100001000110001100010000001011101110
      1001111110100010010000011000100101010101
      1001001001110110101000001001001100001011
      0011011100011111100111001110101101110001
      0111010000010011110110011011000011101001
      1111011010010000101111000010000001100110
      1001011101001000010101001001011111111011
      1000111000100001101100101110100011111100
      1011001111101111110110101111101111011111
      1001111100110101110101111110010010101101
      1111111111000100100111100011101110110100
      0100011011001010110100101101000000110010
      0010010001001110110100011111100011111101
      0100110111101101010101010100110110011011
      0001111111000100000111011010101011000010
      0011011110110110110100011001101111001000
      1000000011110011100111100000001010010011
      1000011101111100000101010101010010100101
      1010001011010100011011001110110010100000
      1000111101111000010111111101010110110111
      0110001111100011001110000100100101001111
      0000111111100010011001010000010110111000
      1000110110001000001100110000001011000010
      1000101101110000101100100010101111100011
      1000010010111101000010000110011010000001
      0010001100001000001100110111110100100111
      1001100110001000100101011111001011001111
      110001011111001101010101001
      ================================================================================



      I was wondering how to solve the case I. I tried to solve it by Sage but my algorithm seems to be too slow. How can I make the program such that it finds the optimal solution and stops the computing as it find it?



      Current code:



      room = 
      input =
      m =
      room.append('I')
      input.append('1110111111101000100110011001100110100000001010001100011110110011111100000101000010101101100111001000100110110101111000110101101000010000100110111101001001011010110100100111011000110001101011110100110011010111110101010100')
      m.append(27)
      F = GF(2)
      L_init = vector(F,input[0])
      d = len(L_init)
      M = matrix(F,d,d)
      for i in range(d):
      for j in range(-m[0],m[0]+1 ):
      M[i,(i+j) % d] = 1
      I = M.solve_right(L_init)
      K = M.right_kernel()
      best = None
      for k in K:
      A = (I+k).nonzero_positions()
      B=
      if len((I+k).nonzero_positions()) < best or best == None:
      S = room[0] + ' '
      best = len((I+k).nonzero_positions())
      for i in range(len(A)):
      S +=str(int(A[i])+1) + ' '
      print(S)
      print("Optimal:")


      Output thus far:



      I 1 2 4 6 8 10 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 65 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 120 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 
      I 1 2 4 6 8 11 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 66 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 121 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 220
      I 1 2 4 6 8 12 13 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 68 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 123 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176
      I 1 2 4 6 8 12 18 19 20 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 56 62 67 70 71 72 74 75 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 110 112 114 115 119 124 126 127 128 130 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 175 176 178 220
      I 1 2 4 6 8 12 18 19 21 22 23 24 25 26 28 31 32 39 40 41 44 45 47 49 51 53 55 56 62 67 70 71 72 74 77 79 80 83 85 87 88 90 94 95 99 100 101 103 106 109 112 114 115 119 124 126 127 128 131 132 133 135 136 137 139 140 142 145 146 148 151 153 156 158 159 160 161 165 175 176 178 185






      python mathematics






      share|improve this question









      New contributor




      sagemathematician is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question









      New contributor




      sagemathematician is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question








      edited 7 mins ago







      sagemathematician













      New contributor




      sagemathematician is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 12 hours ago









      sagemathematiciansagemathematician

      11




      11




      New contributor




      sagemathematician is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      sagemathematician is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      sagemathematician is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "196"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          sagemathematician is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215764%2fshutting-down-all-lamps-with-minimum-number-of-switch-presses%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          sagemathematician is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          sagemathematician is a new contributor. Be nice, and check out our Code of Conduct.













          sagemathematician is a new contributor. Be nice, and check out our Code of Conduct.












          sagemathematician is a new contributor. Be nice, and check out our Code of Conduct.
















          Thanks for contributing an answer to Code Review Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215764%2fshutting-down-all-lamps-with-minimum-number-of-switch-presses%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Costa Masnaga

          Fotorealismo

          Sidney Franklin