Application of Sharman-Morrison for Scalability
I have a fully functioning code in R
. At the moment I am inverting the matrix using Cholesky decomposition. I want to adopt the code for Sharman Morrison:
X<- matrix(rnorm(10000),20,20)
Y<-rnorm(20)
OSLOG<-function(X,Y,a){
if(a<=0){
print("a must be a positive number")
}else{
X<-as.matrix(X)
Y<-as.matrix(Y)
T<-nrow(X)
N<-ncol(X)
bt<- matrix(0,ncol=1,nrow=N)
At<- diag(0,N)
pred<- matrix(0,nrow=T,ncol=1)
theta0<- rep(1,N)
for (t in 1:T){
xt<-X[t,]
pred[t] <- crossprod(as.matrix(theta0), xt)
Dt <- diag(sqrt(abs(c(theta0))))
D <- outer(diag(Dt),diag(Dt))
At <- At + tcrossprod(xt,xt)
InvA <- chol2inv(chol(diag(a,N) + At*D))
bt <- bt + (Y[t] * xt)
theta0 <- crossprod(InvA *D,bt)
}
res<-postResample(pred = pred, obs = Y)
stats<- as.matrix(res)
quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
return(list(predictions=pred,performance=stats,quantiles=quant))
}
}
OSLOG(X,Y,0.00001)$performance
The above code works perfectly well. Is it possible to use Sharman-Morrison in the above code? Also, any other thing I can do to improve performance?
My attempt
OSLOGb <- function(X,Y,a){
if(a <= 0){
print("a must be a positive number")
}else{
X <- as.matrix(X)
Y <- as.matrix(Y)
T <- nrow(X)
N <- ncol(X)
bt <- matrix(0,ncol=1,nrow=N)
At <- diag(1/a,N)
pred <- matrix(0,nrow=T,ncol=1)
theta0 <- rep(1,N)
for (t in 1:T){
xt <- X[t,]
pred[t] <- crossprod(as.matrix(theta0), xt)
Dt <- diag(sqrt(abs(c(theta0))))
D <- outer(diag(Dt),diag(Dt))
At <- At + tcrossprod(xt,xt)
At <- At - (tcrossprod(crossprod(At ,xt),crossprod(At,xt)) / as.numeric(crossprod(xt,crossprod(At,xt))+1))
bt <- bt + (Y[t] * xt)
theta0 <- crossprod(At * D ,bt)
}
res <- postResample(pred = pred, obs = Y)
stats<- as.matrix(res)
quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
return(list(predictions=pred,performance=stats,quantiles=quant))
}
}
OSLOGb(X,Y,0.00001)$performance
Unfortunately, this is not the correct solution. Can someone help me with this?
performance r
New contributor
add a comment |
I have a fully functioning code in R
. At the moment I am inverting the matrix using Cholesky decomposition. I want to adopt the code for Sharman Morrison:
X<- matrix(rnorm(10000),20,20)
Y<-rnorm(20)
OSLOG<-function(X,Y,a){
if(a<=0){
print("a must be a positive number")
}else{
X<-as.matrix(X)
Y<-as.matrix(Y)
T<-nrow(X)
N<-ncol(X)
bt<- matrix(0,ncol=1,nrow=N)
At<- diag(0,N)
pred<- matrix(0,nrow=T,ncol=1)
theta0<- rep(1,N)
for (t in 1:T){
xt<-X[t,]
pred[t] <- crossprod(as.matrix(theta0), xt)
Dt <- diag(sqrt(abs(c(theta0))))
D <- outer(diag(Dt),diag(Dt))
At <- At + tcrossprod(xt,xt)
InvA <- chol2inv(chol(diag(a,N) + At*D))
bt <- bt + (Y[t] * xt)
theta0 <- crossprod(InvA *D,bt)
}
res<-postResample(pred = pred, obs = Y)
stats<- as.matrix(res)
quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
return(list(predictions=pred,performance=stats,quantiles=quant))
}
}
OSLOG(X,Y,0.00001)$performance
The above code works perfectly well. Is it possible to use Sharman-Morrison in the above code? Also, any other thing I can do to improve performance?
My attempt
OSLOGb <- function(X,Y,a){
if(a <= 0){
print("a must be a positive number")
}else{
X <- as.matrix(X)
Y <- as.matrix(Y)
T <- nrow(X)
N <- ncol(X)
bt <- matrix(0,ncol=1,nrow=N)
At <- diag(1/a,N)
pred <- matrix(0,nrow=T,ncol=1)
theta0 <- rep(1,N)
for (t in 1:T){
xt <- X[t,]
pred[t] <- crossprod(as.matrix(theta0), xt)
Dt <- diag(sqrt(abs(c(theta0))))
D <- outer(diag(Dt),diag(Dt))
At <- At + tcrossprod(xt,xt)
At <- At - (tcrossprod(crossprod(At ,xt),crossprod(At,xt)) / as.numeric(crossprod(xt,crossprod(At,xt))+1))
bt <- bt + (Y[t] * xt)
theta0 <- crossprod(At * D ,bt)
}
res <- postResample(pred = pred, obs = Y)
stats<- as.matrix(res)
quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
return(list(predictions=pred,performance=stats,quantiles=quant))
}
}
OSLOGb(X,Y,0.00001)$performance
Unfortunately, this is not the correct solution. Can someone help me with this?
performance r
New contributor
add a comment |
I have a fully functioning code in R
. At the moment I am inverting the matrix using Cholesky decomposition. I want to adopt the code for Sharman Morrison:
X<- matrix(rnorm(10000),20,20)
Y<-rnorm(20)
OSLOG<-function(X,Y,a){
if(a<=0){
print("a must be a positive number")
}else{
X<-as.matrix(X)
Y<-as.matrix(Y)
T<-nrow(X)
N<-ncol(X)
bt<- matrix(0,ncol=1,nrow=N)
At<- diag(0,N)
pred<- matrix(0,nrow=T,ncol=1)
theta0<- rep(1,N)
for (t in 1:T){
xt<-X[t,]
pred[t] <- crossprod(as.matrix(theta0), xt)
Dt <- diag(sqrt(abs(c(theta0))))
D <- outer(diag(Dt),diag(Dt))
At <- At + tcrossprod(xt,xt)
InvA <- chol2inv(chol(diag(a,N) + At*D))
bt <- bt + (Y[t] * xt)
theta0 <- crossprod(InvA *D,bt)
}
res<-postResample(pred = pred, obs = Y)
stats<- as.matrix(res)
quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
return(list(predictions=pred,performance=stats,quantiles=quant))
}
}
OSLOG(X,Y,0.00001)$performance
The above code works perfectly well. Is it possible to use Sharman-Morrison in the above code? Also, any other thing I can do to improve performance?
My attempt
OSLOGb <- function(X,Y,a){
if(a <= 0){
print("a must be a positive number")
}else{
X <- as.matrix(X)
Y <- as.matrix(Y)
T <- nrow(X)
N <- ncol(X)
bt <- matrix(0,ncol=1,nrow=N)
At <- diag(1/a,N)
pred <- matrix(0,nrow=T,ncol=1)
theta0 <- rep(1,N)
for (t in 1:T){
xt <- X[t,]
pred[t] <- crossprod(as.matrix(theta0), xt)
Dt <- diag(sqrt(abs(c(theta0))))
D <- outer(diag(Dt),diag(Dt))
At <- At + tcrossprod(xt,xt)
At <- At - (tcrossprod(crossprod(At ,xt),crossprod(At,xt)) / as.numeric(crossprod(xt,crossprod(At,xt))+1))
bt <- bt + (Y[t] * xt)
theta0 <- crossprod(At * D ,bt)
}
res <- postResample(pred = pred, obs = Y)
stats<- as.matrix(res)
quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
return(list(predictions=pred,performance=stats,quantiles=quant))
}
}
OSLOGb(X,Y,0.00001)$performance
Unfortunately, this is not the correct solution. Can someone help me with this?
performance r
New contributor
I have a fully functioning code in R
. At the moment I am inverting the matrix using Cholesky decomposition. I want to adopt the code for Sharman Morrison:
X<- matrix(rnorm(10000),20,20)
Y<-rnorm(20)
OSLOG<-function(X,Y,a){
if(a<=0){
print("a must be a positive number")
}else{
X<-as.matrix(X)
Y<-as.matrix(Y)
T<-nrow(X)
N<-ncol(X)
bt<- matrix(0,ncol=1,nrow=N)
At<- diag(0,N)
pred<- matrix(0,nrow=T,ncol=1)
theta0<- rep(1,N)
for (t in 1:T){
xt<-X[t,]
pred[t] <- crossprod(as.matrix(theta0), xt)
Dt <- diag(sqrt(abs(c(theta0))))
D <- outer(diag(Dt),diag(Dt))
At <- At + tcrossprod(xt,xt)
InvA <- chol2inv(chol(diag(a,N) + At*D))
bt <- bt + (Y[t] * xt)
theta0 <- crossprod(InvA *D,bt)
}
res<-postResample(pred = pred, obs = Y)
stats<- as.matrix(res)
quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
return(list(predictions=pred,performance=stats,quantiles=quant))
}
}
OSLOG(X,Y,0.00001)$performance
The above code works perfectly well. Is it possible to use Sharman-Morrison in the above code? Also, any other thing I can do to improve performance?
My attempt
OSLOGb <- function(X,Y,a){
if(a <= 0){
print("a must be a positive number")
}else{
X <- as.matrix(X)
Y <- as.matrix(Y)
T <- nrow(X)
N <- ncol(X)
bt <- matrix(0,ncol=1,nrow=N)
At <- diag(1/a,N)
pred <- matrix(0,nrow=T,ncol=1)
theta0 <- rep(1,N)
for (t in 1:T){
xt <- X[t,]
pred[t] <- crossprod(as.matrix(theta0), xt)
Dt <- diag(sqrt(abs(c(theta0))))
D <- outer(diag(Dt),diag(Dt))
At <- At + tcrossprod(xt,xt)
At <- At - (tcrossprod(crossprod(At ,xt),crossprod(At,xt)) / as.numeric(crossprod(xt,crossprod(At,xt))+1))
bt <- bt + (Y[t] * xt)
theta0 <- crossprod(At * D ,bt)
}
res <- postResample(pred = pred, obs = Y)
stats<- as.matrix(res)
quant<-quantile(as.matrix(Y)-as.matrix(pred),probs=c(.25,.50,.75))
return(list(predictions=pred,performance=stats,quantiles=quant))
}
}
OSLOGb(X,Y,0.00001)$performance
Unfortunately, this is not the correct solution. Can someone help me with this?
performance r
performance r
New contributor
New contributor
New contributor
asked 2 mins ago
Jamil
1
1
New contributor
New contributor
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Jamil is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210299%2fapplication-of-sharman-morrison-for-scalability%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Jamil is a new contributor. Be nice, and check out our Code of Conduct.
Jamil is a new contributor. Be nice, and check out our Code of Conduct.
Jamil is a new contributor. Be nice, and check out our Code of Conduct.
Jamil is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210299%2fapplication-of-sharman-morrison-for-scalability%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown