What causes overtones at harmonic frequencies in an instrument?











up vote
3
down vote

favorite












I know when a string is plucked on a violin you can hear many overtones at harmonic frequencies, but where do these overtones come from?



Does an ideal string vibrating in a vacuum vibrate at the fundamental and harmonic frequencies? Are the harmonic overtones caused by the shape of the resonating body? Are they from the materials used?










share|improve this question









New contributor




nanotek is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • I think you mean overtones.
    – xerotolerant
    6 hours ago






  • 2




    @xerotolerant - aren't the terms synonymous?
    – Tim
    5 hours ago










  • No-one would know in a vacuum - sound can't travel in a vacuum. Unless it's a Hoover...
    – Tim
    5 hours ago










  • I'm using this as my definitions. I'd say specifically for this question I'm interested in what causes an instrument to vibrate at it's harmonic frequencies, not specifically what causes it to vibrate at it's own resonant frequency
    – nanotek
    5 hours ago






  • 1




    @Tim Harmonics refer specifically to integer multiples of the fundamental frequency. Overtones refer to any resonant frequency above the fundamental frequency. An overtone may or may not be a harmonic - taken from here
    – xerotolerant
    5 hours ago















up vote
3
down vote

favorite












I know when a string is plucked on a violin you can hear many overtones at harmonic frequencies, but where do these overtones come from?



Does an ideal string vibrating in a vacuum vibrate at the fundamental and harmonic frequencies? Are the harmonic overtones caused by the shape of the resonating body? Are they from the materials used?










share|improve this question









New contributor




nanotek is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • I think you mean overtones.
    – xerotolerant
    6 hours ago






  • 2




    @xerotolerant - aren't the terms synonymous?
    – Tim
    5 hours ago










  • No-one would know in a vacuum - sound can't travel in a vacuum. Unless it's a Hoover...
    – Tim
    5 hours ago










  • I'm using this as my definitions. I'd say specifically for this question I'm interested in what causes an instrument to vibrate at it's harmonic frequencies, not specifically what causes it to vibrate at it's own resonant frequency
    – nanotek
    5 hours ago






  • 1




    @Tim Harmonics refer specifically to integer multiples of the fundamental frequency. Overtones refer to any resonant frequency above the fundamental frequency. An overtone may or may not be a harmonic - taken from here
    – xerotolerant
    5 hours ago













up vote
3
down vote

favorite









up vote
3
down vote

favorite











I know when a string is plucked on a violin you can hear many overtones at harmonic frequencies, but where do these overtones come from?



Does an ideal string vibrating in a vacuum vibrate at the fundamental and harmonic frequencies? Are the harmonic overtones caused by the shape of the resonating body? Are they from the materials used?










share|improve this question









New contributor




nanotek is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











I know when a string is plucked on a violin you can hear many overtones at harmonic frequencies, but where do these overtones come from?



Does an ideal string vibrating in a vacuum vibrate at the fundamental and harmonic frequencies? Are the harmonic overtones caused by the shape of the resonating body? Are they from the materials used?







theory strings string-instruments acoustics harmonics






share|improve this question









New contributor




nanotek is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




nanotek is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 9 mins ago





















New contributor




nanotek is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 6 hours ago









nanotek

1808




1808




New contributor




nanotek is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





nanotek is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






nanotek is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • I think you mean overtones.
    – xerotolerant
    6 hours ago






  • 2




    @xerotolerant - aren't the terms synonymous?
    – Tim
    5 hours ago










  • No-one would know in a vacuum - sound can't travel in a vacuum. Unless it's a Hoover...
    – Tim
    5 hours ago










  • I'm using this as my definitions. I'd say specifically for this question I'm interested in what causes an instrument to vibrate at it's harmonic frequencies, not specifically what causes it to vibrate at it's own resonant frequency
    – nanotek
    5 hours ago






  • 1




    @Tim Harmonics refer specifically to integer multiples of the fundamental frequency. Overtones refer to any resonant frequency above the fundamental frequency. An overtone may or may not be a harmonic - taken from here
    – xerotolerant
    5 hours ago


















  • I think you mean overtones.
    – xerotolerant
    6 hours ago






  • 2




    @xerotolerant - aren't the terms synonymous?
    – Tim
    5 hours ago










  • No-one would know in a vacuum - sound can't travel in a vacuum. Unless it's a Hoover...
    – Tim
    5 hours ago










  • I'm using this as my definitions. I'd say specifically for this question I'm interested in what causes an instrument to vibrate at it's harmonic frequencies, not specifically what causes it to vibrate at it's own resonant frequency
    – nanotek
    5 hours ago






  • 1




    @Tim Harmonics refer specifically to integer multiples of the fundamental frequency. Overtones refer to any resonant frequency above the fundamental frequency. An overtone may or may not be a harmonic - taken from here
    – xerotolerant
    5 hours ago
















I think you mean overtones.
– xerotolerant
6 hours ago




I think you mean overtones.
– xerotolerant
6 hours ago




2




2




@xerotolerant - aren't the terms synonymous?
– Tim
5 hours ago




@xerotolerant - aren't the terms synonymous?
– Tim
5 hours ago












No-one would know in a vacuum - sound can't travel in a vacuum. Unless it's a Hoover...
– Tim
5 hours ago




No-one would know in a vacuum - sound can't travel in a vacuum. Unless it's a Hoover...
– Tim
5 hours ago












I'm using this as my definitions. I'd say specifically for this question I'm interested in what causes an instrument to vibrate at it's harmonic frequencies, not specifically what causes it to vibrate at it's own resonant frequency
– nanotek
5 hours ago




I'm using this as my definitions. I'd say specifically for this question I'm interested in what causes an instrument to vibrate at it's harmonic frequencies, not specifically what causes it to vibrate at it's own resonant frequency
– nanotek
5 hours ago




1




1




@Tim Harmonics refer specifically to integer multiples of the fundamental frequency. Overtones refer to any resonant frequency above the fundamental frequency. An overtone may or may not be a harmonic - taken from here
– xerotolerant
5 hours ago




@Tim Harmonics refer specifically to integer multiples of the fundamental frequency. Overtones refer to any resonant frequency above the fundamental frequency. An overtone may or may not be a harmonic - taken from here
– xerotolerant
5 hours ago










3 Answers
3






active

oldest

votes

















up vote
4
down vote



accepted










"in a vacuum" will not make sound, but yes your thoughts are on the right track.
All vibrating bodies, strings, plates, beams, etc, have a natural set of harmonics (or overtones as described by some). These are usually determined by the boundary conditions on the vibrating object and a related to the fundamental tone by a simple relationship. For the ideal model of a string fixed at two ends the relationship is



f_n = n*f_1 (f_1 is sometimes called f0, the fundamental).



The fundamental is the lowest frequency of vibration supported by the object and is heard as the natural tone (for example on a properly tuned guitar the open string are named for the fundamental tone).



What excites the harmonics is the attack. Plucking a string at different points will produce completely different sets of allowed harmonics (only those supported by the boundary conditions will show up). Tapping a string or bowing a string will produce different harmonic content and this is what is heard as "tone" by listeners and musicians. Twangy versus warm, smooth, etc. are all adjectives that describe harmonic content.



As for materials, the specific materials do come into play for determining the fundamental but once that is known the harmonic sequence is fixed. For plates and beams the overtones are NOT related by a simple relationship for all boundary conditions. Some vibrating systems can have dissonant overtones. The same applies to pipes, a.k.a horns, and percussion instruments.






share|improve this answer





















  • +1! I'd also mention that the materials impact the harmonics present only insofar as they change the speed of waves. Another thing I'd add is that, when the string is pulled back, its shape can be described in terms of a linear combination of the harmonics. The amplitude of each harmonic dictates how loud each harmonic will be, and whether it will be present at all. (If we allow interaction between the string and the instrument, then we can add effects like certain harmonics damping at different rates, but I don't think that's what the question intends to ask.)
    – jdjazz
    17 mins ago












  • True on all points. I was trying to keep it less physicsy for the music community. Thanks.
    – ggcg
    11 mins ago


















up vote
2
down vote













What you observe is a physical property of all resonators. In the case of vibration every resonator has different modes of vibration. In the case of a drum head or a cymbal these modes are not harmonic, in the case of strings or air columns the modes of vibration wich are noticeable are harmonic.



Think of a string: It is fixed at both ends if you start and draw on paper the possibilities the string has to vibrate you´ll get one top or valley as the first possibility, one valley and one top as the second, "top valley top" or "valley top valley" as the next one and so on. (In reality a string of a bowed instrument is not moving this way, but thats not important for now)



These are the basic possibilities the string can move and if you don´t take special measures always when the first one is possible, the second and third and ... are possible.



If you take this fact into account the question reverses. How would we expect when we excite the first mode of vibration that there is not even a little energy transfered to the second, third and so on? After all all parts of the string are connected which each other, there are strands in the core and wraps and a bow is not a laser in a super cooled atomic trap so these modes are mechanically coupled.



If you manage to only excite the fundamental mode, the fundamental mode will excite the other ones and so on, simply because its possible to happen.



And thats a basic physical principle: When you transfer energy (e.g. with the bow) all accessible states (modes) will receive there share of it. The one with the lowest energy receives the most, the next one less, the next next one less less and so on. Which one receives how much depends on technique, location of the excitation, material, construction, and so on.



This principle holds true for every kind of excitation. Radio waves, Colors and so on.



In the case of stringed instruments you can make the higher modes of vibration more unfavourable by slightly touching the string effectively reducing the amount of energy that those modes receive that have strong movement in that position and killing those overtones or harmonics. Look for harmonic glissando.






share|improve this answer




























    up vote
    0
    down vote













    xerotolerant is correct that "overtones" is the correct word in this case. Harmonic and overtone can sometimes be used interchangeably, but not in this case.



    This is a big topic, but the short answer is the shape of the wave, which is called the "wave form."



    We often depict waves as being simple, smooth curves, but they are, in fact, much more complicated. If you digitally record a sound and then zoom in really, really close, you will see that the wave form is very jagged and irregular. This shape is what gives each instrument its unique characteristics, including the levels of the various harmonics.



    So, to answer your specific questions:




    Does an ideal string vibrating in a vacuum vibrate with harmonics?




    Yes and No, the vibrating string will still create a wave, but the wave will over no medium (i.e. air) to travel through.




    Are the harmonics caused by the shape of the resonating body? Are they from the materials used?




    Yes to both. All of the properties, e.g. the shape, size, material, performance technique, etc., combine to create the unique sound that you hear.






    share|improve this answer























    • The OP cites the correct definitions of harmonics and overtones in the comments above. This shows that they understand the difference between harmonics and overtones, no? The phrase "ideal string" makes me think the OP does want to ask about harmonics specifically, and not overtones generally.
      – jdjazz
      13 mins ago











    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "240"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });






    nanotek is a new contributor. Be nice, and check out our Code of Conduct.










    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmusic.stackexchange.com%2fquestions%2f77472%2fwhat-causes-overtones-at-harmonic-frequencies-in-an-instrument%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    4
    down vote



    accepted










    "in a vacuum" will not make sound, but yes your thoughts are on the right track.
    All vibrating bodies, strings, plates, beams, etc, have a natural set of harmonics (or overtones as described by some). These are usually determined by the boundary conditions on the vibrating object and a related to the fundamental tone by a simple relationship. For the ideal model of a string fixed at two ends the relationship is



    f_n = n*f_1 (f_1 is sometimes called f0, the fundamental).



    The fundamental is the lowest frequency of vibration supported by the object and is heard as the natural tone (for example on a properly tuned guitar the open string are named for the fundamental tone).



    What excites the harmonics is the attack. Plucking a string at different points will produce completely different sets of allowed harmonics (only those supported by the boundary conditions will show up). Tapping a string or bowing a string will produce different harmonic content and this is what is heard as "tone" by listeners and musicians. Twangy versus warm, smooth, etc. are all adjectives that describe harmonic content.



    As for materials, the specific materials do come into play for determining the fundamental but once that is known the harmonic sequence is fixed. For plates and beams the overtones are NOT related by a simple relationship for all boundary conditions. Some vibrating systems can have dissonant overtones. The same applies to pipes, a.k.a horns, and percussion instruments.






    share|improve this answer





















    • +1! I'd also mention that the materials impact the harmonics present only insofar as they change the speed of waves. Another thing I'd add is that, when the string is pulled back, its shape can be described in terms of a linear combination of the harmonics. The amplitude of each harmonic dictates how loud each harmonic will be, and whether it will be present at all. (If we allow interaction between the string and the instrument, then we can add effects like certain harmonics damping at different rates, but I don't think that's what the question intends to ask.)
      – jdjazz
      17 mins ago












    • True on all points. I was trying to keep it less physicsy for the music community. Thanks.
      – ggcg
      11 mins ago















    up vote
    4
    down vote



    accepted










    "in a vacuum" will not make sound, but yes your thoughts are on the right track.
    All vibrating bodies, strings, plates, beams, etc, have a natural set of harmonics (or overtones as described by some). These are usually determined by the boundary conditions on the vibrating object and a related to the fundamental tone by a simple relationship. For the ideal model of a string fixed at two ends the relationship is



    f_n = n*f_1 (f_1 is sometimes called f0, the fundamental).



    The fundamental is the lowest frequency of vibration supported by the object and is heard as the natural tone (for example on a properly tuned guitar the open string are named for the fundamental tone).



    What excites the harmonics is the attack. Plucking a string at different points will produce completely different sets of allowed harmonics (only those supported by the boundary conditions will show up). Tapping a string or bowing a string will produce different harmonic content and this is what is heard as "tone" by listeners and musicians. Twangy versus warm, smooth, etc. are all adjectives that describe harmonic content.



    As for materials, the specific materials do come into play for determining the fundamental but once that is known the harmonic sequence is fixed. For plates and beams the overtones are NOT related by a simple relationship for all boundary conditions. Some vibrating systems can have dissonant overtones. The same applies to pipes, a.k.a horns, and percussion instruments.






    share|improve this answer





















    • +1! I'd also mention that the materials impact the harmonics present only insofar as they change the speed of waves. Another thing I'd add is that, when the string is pulled back, its shape can be described in terms of a linear combination of the harmonics. The amplitude of each harmonic dictates how loud each harmonic will be, and whether it will be present at all. (If we allow interaction between the string and the instrument, then we can add effects like certain harmonics damping at different rates, but I don't think that's what the question intends to ask.)
      – jdjazz
      17 mins ago












    • True on all points. I was trying to keep it less physicsy for the music community. Thanks.
      – ggcg
      11 mins ago













    up vote
    4
    down vote



    accepted







    up vote
    4
    down vote



    accepted






    "in a vacuum" will not make sound, but yes your thoughts are on the right track.
    All vibrating bodies, strings, plates, beams, etc, have a natural set of harmonics (or overtones as described by some). These are usually determined by the boundary conditions on the vibrating object and a related to the fundamental tone by a simple relationship. For the ideal model of a string fixed at two ends the relationship is



    f_n = n*f_1 (f_1 is sometimes called f0, the fundamental).



    The fundamental is the lowest frequency of vibration supported by the object and is heard as the natural tone (for example on a properly tuned guitar the open string are named for the fundamental tone).



    What excites the harmonics is the attack. Plucking a string at different points will produce completely different sets of allowed harmonics (only those supported by the boundary conditions will show up). Tapping a string or bowing a string will produce different harmonic content and this is what is heard as "tone" by listeners and musicians. Twangy versus warm, smooth, etc. are all adjectives that describe harmonic content.



    As for materials, the specific materials do come into play for determining the fundamental but once that is known the harmonic sequence is fixed. For plates and beams the overtones are NOT related by a simple relationship for all boundary conditions. Some vibrating systems can have dissonant overtones. The same applies to pipes, a.k.a horns, and percussion instruments.






    share|improve this answer












    "in a vacuum" will not make sound, but yes your thoughts are on the right track.
    All vibrating bodies, strings, plates, beams, etc, have a natural set of harmonics (or overtones as described by some). These are usually determined by the boundary conditions on the vibrating object and a related to the fundamental tone by a simple relationship. For the ideal model of a string fixed at two ends the relationship is



    f_n = n*f_1 (f_1 is sometimes called f0, the fundamental).



    The fundamental is the lowest frequency of vibration supported by the object and is heard as the natural tone (for example on a properly tuned guitar the open string are named for the fundamental tone).



    What excites the harmonics is the attack. Plucking a string at different points will produce completely different sets of allowed harmonics (only those supported by the boundary conditions will show up). Tapping a string or bowing a string will produce different harmonic content and this is what is heard as "tone" by listeners and musicians. Twangy versus warm, smooth, etc. are all adjectives that describe harmonic content.



    As for materials, the specific materials do come into play for determining the fundamental but once that is known the harmonic sequence is fixed. For plates and beams the overtones are NOT related by a simple relationship for all boundary conditions. Some vibrating systems can have dissonant overtones. The same applies to pipes, a.k.a horns, and percussion instruments.







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered 2 hours ago









    ggcg

    3,489219




    3,489219












    • +1! I'd also mention that the materials impact the harmonics present only insofar as they change the speed of waves. Another thing I'd add is that, when the string is pulled back, its shape can be described in terms of a linear combination of the harmonics. The amplitude of each harmonic dictates how loud each harmonic will be, and whether it will be present at all. (If we allow interaction between the string and the instrument, then we can add effects like certain harmonics damping at different rates, but I don't think that's what the question intends to ask.)
      – jdjazz
      17 mins ago












    • True on all points. I was trying to keep it less physicsy for the music community. Thanks.
      – ggcg
      11 mins ago


















    • +1! I'd also mention that the materials impact the harmonics present only insofar as they change the speed of waves. Another thing I'd add is that, when the string is pulled back, its shape can be described in terms of a linear combination of the harmonics. The amplitude of each harmonic dictates how loud each harmonic will be, and whether it will be present at all. (If we allow interaction between the string and the instrument, then we can add effects like certain harmonics damping at different rates, but I don't think that's what the question intends to ask.)
      – jdjazz
      17 mins ago












    • True on all points. I was trying to keep it less physicsy for the music community. Thanks.
      – ggcg
      11 mins ago
















    +1! I'd also mention that the materials impact the harmonics present only insofar as they change the speed of waves. Another thing I'd add is that, when the string is pulled back, its shape can be described in terms of a linear combination of the harmonics. The amplitude of each harmonic dictates how loud each harmonic will be, and whether it will be present at all. (If we allow interaction between the string and the instrument, then we can add effects like certain harmonics damping at different rates, but I don't think that's what the question intends to ask.)
    – jdjazz
    17 mins ago






    +1! I'd also mention that the materials impact the harmonics present only insofar as they change the speed of waves. Another thing I'd add is that, when the string is pulled back, its shape can be described in terms of a linear combination of the harmonics. The amplitude of each harmonic dictates how loud each harmonic will be, and whether it will be present at all. (If we allow interaction between the string and the instrument, then we can add effects like certain harmonics damping at different rates, but I don't think that's what the question intends to ask.)
    – jdjazz
    17 mins ago














    True on all points. I was trying to keep it less physicsy for the music community. Thanks.
    – ggcg
    11 mins ago




    True on all points. I was trying to keep it less physicsy for the music community. Thanks.
    – ggcg
    11 mins ago










    up vote
    2
    down vote













    What you observe is a physical property of all resonators. In the case of vibration every resonator has different modes of vibration. In the case of a drum head or a cymbal these modes are not harmonic, in the case of strings or air columns the modes of vibration wich are noticeable are harmonic.



    Think of a string: It is fixed at both ends if you start and draw on paper the possibilities the string has to vibrate you´ll get one top or valley as the first possibility, one valley and one top as the second, "top valley top" or "valley top valley" as the next one and so on. (In reality a string of a bowed instrument is not moving this way, but thats not important for now)



    These are the basic possibilities the string can move and if you don´t take special measures always when the first one is possible, the second and third and ... are possible.



    If you take this fact into account the question reverses. How would we expect when we excite the first mode of vibration that there is not even a little energy transfered to the second, third and so on? After all all parts of the string are connected which each other, there are strands in the core and wraps and a bow is not a laser in a super cooled atomic trap so these modes are mechanically coupled.



    If you manage to only excite the fundamental mode, the fundamental mode will excite the other ones and so on, simply because its possible to happen.



    And thats a basic physical principle: When you transfer energy (e.g. with the bow) all accessible states (modes) will receive there share of it. The one with the lowest energy receives the most, the next one less, the next next one less less and so on. Which one receives how much depends on technique, location of the excitation, material, construction, and so on.



    This principle holds true for every kind of excitation. Radio waves, Colors and so on.



    In the case of stringed instruments you can make the higher modes of vibration more unfavourable by slightly touching the string effectively reducing the amount of energy that those modes receive that have strong movement in that position and killing those overtones or harmonics. Look for harmonic glissando.






    share|improve this answer

























      up vote
      2
      down vote













      What you observe is a physical property of all resonators. In the case of vibration every resonator has different modes of vibration. In the case of a drum head or a cymbal these modes are not harmonic, in the case of strings or air columns the modes of vibration wich are noticeable are harmonic.



      Think of a string: It is fixed at both ends if you start and draw on paper the possibilities the string has to vibrate you´ll get one top or valley as the first possibility, one valley and one top as the second, "top valley top" or "valley top valley" as the next one and so on. (In reality a string of a bowed instrument is not moving this way, but thats not important for now)



      These are the basic possibilities the string can move and if you don´t take special measures always when the first one is possible, the second and third and ... are possible.



      If you take this fact into account the question reverses. How would we expect when we excite the first mode of vibration that there is not even a little energy transfered to the second, third and so on? After all all parts of the string are connected which each other, there are strands in the core and wraps and a bow is not a laser in a super cooled atomic trap so these modes are mechanically coupled.



      If you manage to only excite the fundamental mode, the fundamental mode will excite the other ones and so on, simply because its possible to happen.



      And thats a basic physical principle: When you transfer energy (e.g. with the bow) all accessible states (modes) will receive there share of it. The one with the lowest energy receives the most, the next one less, the next next one less less and so on. Which one receives how much depends on technique, location of the excitation, material, construction, and so on.



      This principle holds true for every kind of excitation. Radio waves, Colors and so on.



      In the case of stringed instruments you can make the higher modes of vibration more unfavourable by slightly touching the string effectively reducing the amount of energy that those modes receive that have strong movement in that position and killing those overtones or harmonics. Look for harmonic glissando.






      share|improve this answer























        up vote
        2
        down vote










        up vote
        2
        down vote









        What you observe is a physical property of all resonators. In the case of vibration every resonator has different modes of vibration. In the case of a drum head or a cymbal these modes are not harmonic, in the case of strings or air columns the modes of vibration wich are noticeable are harmonic.



        Think of a string: It is fixed at both ends if you start and draw on paper the possibilities the string has to vibrate you´ll get one top or valley as the first possibility, one valley and one top as the second, "top valley top" or "valley top valley" as the next one and so on. (In reality a string of a bowed instrument is not moving this way, but thats not important for now)



        These are the basic possibilities the string can move and if you don´t take special measures always when the first one is possible, the second and third and ... are possible.



        If you take this fact into account the question reverses. How would we expect when we excite the first mode of vibration that there is not even a little energy transfered to the second, third and so on? After all all parts of the string are connected which each other, there are strands in the core and wraps and a bow is not a laser in a super cooled atomic trap so these modes are mechanically coupled.



        If you manage to only excite the fundamental mode, the fundamental mode will excite the other ones and so on, simply because its possible to happen.



        And thats a basic physical principle: When you transfer energy (e.g. with the bow) all accessible states (modes) will receive there share of it. The one with the lowest energy receives the most, the next one less, the next next one less less and so on. Which one receives how much depends on technique, location of the excitation, material, construction, and so on.



        This principle holds true for every kind of excitation. Radio waves, Colors and so on.



        In the case of stringed instruments you can make the higher modes of vibration more unfavourable by slightly touching the string effectively reducing the amount of energy that those modes receive that have strong movement in that position and killing those overtones or harmonics. Look for harmonic glissando.






        share|improve this answer












        What you observe is a physical property of all resonators. In the case of vibration every resonator has different modes of vibration. In the case of a drum head or a cymbal these modes are not harmonic, in the case of strings or air columns the modes of vibration wich are noticeable are harmonic.



        Think of a string: It is fixed at both ends if you start and draw on paper the possibilities the string has to vibrate you´ll get one top or valley as the first possibility, one valley and one top as the second, "top valley top" or "valley top valley" as the next one and so on. (In reality a string of a bowed instrument is not moving this way, but thats not important for now)



        These are the basic possibilities the string can move and if you don´t take special measures always when the first one is possible, the second and third and ... are possible.



        If you take this fact into account the question reverses. How would we expect when we excite the first mode of vibration that there is not even a little energy transfered to the second, third and so on? After all all parts of the string are connected which each other, there are strands in the core and wraps and a bow is not a laser in a super cooled atomic trap so these modes are mechanically coupled.



        If you manage to only excite the fundamental mode, the fundamental mode will excite the other ones and so on, simply because its possible to happen.



        And thats a basic physical principle: When you transfer energy (e.g. with the bow) all accessible states (modes) will receive there share of it. The one with the lowest energy receives the most, the next one less, the next next one less less and so on. Which one receives how much depends on technique, location of the excitation, material, construction, and so on.



        This principle holds true for every kind of excitation. Radio waves, Colors and so on.



        In the case of stringed instruments you can make the higher modes of vibration more unfavourable by slightly touching the string effectively reducing the amount of energy that those modes receive that have strong movement in that position and killing those overtones or harmonics. Look for harmonic glissando.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 4 hours ago









        DrSvanHay

        4757




        4757






















            up vote
            0
            down vote













            xerotolerant is correct that "overtones" is the correct word in this case. Harmonic and overtone can sometimes be used interchangeably, but not in this case.



            This is a big topic, but the short answer is the shape of the wave, which is called the "wave form."



            We often depict waves as being simple, smooth curves, but they are, in fact, much more complicated. If you digitally record a sound and then zoom in really, really close, you will see that the wave form is very jagged and irregular. This shape is what gives each instrument its unique characteristics, including the levels of the various harmonics.



            So, to answer your specific questions:




            Does an ideal string vibrating in a vacuum vibrate with harmonics?




            Yes and No, the vibrating string will still create a wave, but the wave will over no medium (i.e. air) to travel through.




            Are the harmonics caused by the shape of the resonating body? Are they from the materials used?




            Yes to both. All of the properties, e.g. the shape, size, material, performance technique, etc., combine to create the unique sound that you hear.






            share|improve this answer























            • The OP cites the correct definitions of harmonics and overtones in the comments above. This shows that they understand the difference between harmonics and overtones, no? The phrase "ideal string" makes me think the OP does want to ask about harmonics specifically, and not overtones generally.
              – jdjazz
              13 mins ago















            up vote
            0
            down vote













            xerotolerant is correct that "overtones" is the correct word in this case. Harmonic and overtone can sometimes be used interchangeably, but not in this case.



            This is a big topic, but the short answer is the shape of the wave, which is called the "wave form."



            We often depict waves as being simple, smooth curves, but they are, in fact, much more complicated. If you digitally record a sound and then zoom in really, really close, you will see that the wave form is very jagged and irregular. This shape is what gives each instrument its unique characteristics, including the levels of the various harmonics.



            So, to answer your specific questions:




            Does an ideal string vibrating in a vacuum vibrate with harmonics?




            Yes and No, the vibrating string will still create a wave, but the wave will over no medium (i.e. air) to travel through.




            Are the harmonics caused by the shape of the resonating body? Are they from the materials used?




            Yes to both. All of the properties, e.g. the shape, size, material, performance technique, etc., combine to create the unique sound that you hear.






            share|improve this answer























            • The OP cites the correct definitions of harmonics and overtones in the comments above. This shows that they understand the difference between harmonics and overtones, no? The phrase "ideal string" makes me think the OP does want to ask about harmonics specifically, and not overtones generally.
              – jdjazz
              13 mins ago













            up vote
            0
            down vote










            up vote
            0
            down vote









            xerotolerant is correct that "overtones" is the correct word in this case. Harmonic and overtone can sometimes be used interchangeably, but not in this case.



            This is a big topic, but the short answer is the shape of the wave, which is called the "wave form."



            We often depict waves as being simple, smooth curves, but they are, in fact, much more complicated. If you digitally record a sound and then zoom in really, really close, you will see that the wave form is very jagged and irregular. This shape is what gives each instrument its unique characteristics, including the levels of the various harmonics.



            So, to answer your specific questions:




            Does an ideal string vibrating in a vacuum vibrate with harmonics?




            Yes and No, the vibrating string will still create a wave, but the wave will over no medium (i.e. air) to travel through.




            Are the harmonics caused by the shape of the resonating body? Are they from the materials used?




            Yes to both. All of the properties, e.g. the shape, size, material, performance technique, etc., combine to create the unique sound that you hear.






            share|improve this answer














            xerotolerant is correct that "overtones" is the correct word in this case. Harmonic and overtone can sometimes be used interchangeably, but not in this case.



            This is a big topic, but the short answer is the shape of the wave, which is called the "wave form."



            We often depict waves as being simple, smooth curves, but they are, in fact, much more complicated. If you digitally record a sound and then zoom in really, really close, you will see that the wave form is very jagged and irregular. This shape is what gives each instrument its unique characteristics, including the levels of the various harmonics.



            So, to answer your specific questions:




            Does an ideal string vibrating in a vacuum vibrate with harmonics?




            Yes and No, the vibrating string will still create a wave, but the wave will over no medium (i.e. air) to travel through.




            Are the harmonics caused by the shape of the resonating body? Are they from the materials used?




            Yes to both. All of the properties, e.g. the shape, size, material, performance technique, etc., combine to create the unique sound that you hear.







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 5 hours ago

























            answered 5 hours ago









            Peter

            1,049112




            1,049112












            • The OP cites the correct definitions of harmonics and overtones in the comments above. This shows that they understand the difference between harmonics and overtones, no? The phrase "ideal string" makes me think the OP does want to ask about harmonics specifically, and not overtones generally.
              – jdjazz
              13 mins ago


















            • The OP cites the correct definitions of harmonics and overtones in the comments above. This shows that they understand the difference between harmonics and overtones, no? The phrase "ideal string" makes me think the OP does want to ask about harmonics specifically, and not overtones generally.
              – jdjazz
              13 mins ago
















            The OP cites the correct definitions of harmonics and overtones in the comments above. This shows that they understand the difference between harmonics and overtones, no? The phrase "ideal string" makes me think the OP does want to ask about harmonics specifically, and not overtones generally.
            – jdjazz
            13 mins ago




            The OP cites the correct definitions of harmonics and overtones in the comments above. This shows that they understand the difference between harmonics and overtones, no? The phrase "ideal string" makes me think the OP does want to ask about harmonics specifically, and not overtones generally.
            – jdjazz
            13 mins ago










            nanotek is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            nanotek is a new contributor. Be nice, and check out our Code of Conduct.













            nanotek is a new contributor. Be nice, and check out our Code of Conduct.












            nanotek is a new contributor. Be nice, and check out our Code of Conduct.
















            Thanks for contributing an answer to Music: Practice & Theory Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmusic.stackexchange.com%2fquestions%2f77472%2fwhat-causes-overtones-at-harmonic-frequencies-in-an-instrument%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Costa Masnaga

            Fotorealismo

            Sidney Franklin