Linear Regression on Pandas
$begingroup$
I'm working on a simple statistics problem with Pandas
and sklearn
. I'm aware that my code is ugly, but how can I improve it?
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
df = pd.read_csv("sphist.csv")
df["Date"] = pd.to_datetime(df["Date"])
df.sort_values(["Date"], inplace=True)
df["day_5"] = np.nan
df["day_30"] = np.nan
df["std_5"] = np.nan
for i in range(30, len(df)):
last_5 = df.iloc[i-5:i, 4]
last_30 = df.iloc[i-30:i, 4]
df.iloc[i, -3] = last_5.mean()
df.iloc[i, -2] = last_30.mean()
df.iloc[i, -1] = last_5.std()
df = df.iloc[30:]
df.dropna(axis=0, inplace=True)
train = df[df["Date"] < datetime(2013, 1, 1)]
test = df[df["Date"] >= datetime(2013, 1, 1)]
# print(train.head(), test.head())
X_cols = ["day_5", "day_30", "std_5"]
y_col = "Close"
lr = LinearRegression()
lr.fit(train[X_cols], train[y_col])
yhat = lr.predict(test[X_cols])
mse = mean_squared_error(yhat, test[y_col])
rmse = mse/len(yhat)
score = lr.score(test[X_cols], test[y_col])
print(rmse, score)
plt.scatter(yhat, test[y_col], c="k", s=1)
plt.plot([.95*yhat.min(), 1.05*yhat.max()], [.95*yhat.min(), 1.05*yhat.max()], c="r")
plt.show()
- It relies on hard-code iloc indices, which is hard to read or maintain. How can I change it to column names/row names?
- The codes look messy. Any advice to improve it?
python pandas
New contributor
$endgroup$
add a comment |
$begingroup$
I'm working on a simple statistics problem with Pandas
and sklearn
. I'm aware that my code is ugly, but how can I improve it?
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
df = pd.read_csv("sphist.csv")
df["Date"] = pd.to_datetime(df["Date"])
df.sort_values(["Date"], inplace=True)
df["day_5"] = np.nan
df["day_30"] = np.nan
df["std_5"] = np.nan
for i in range(30, len(df)):
last_5 = df.iloc[i-5:i, 4]
last_30 = df.iloc[i-30:i, 4]
df.iloc[i, -3] = last_5.mean()
df.iloc[i, -2] = last_30.mean()
df.iloc[i, -1] = last_5.std()
df = df.iloc[30:]
df.dropna(axis=0, inplace=True)
train = df[df["Date"] < datetime(2013, 1, 1)]
test = df[df["Date"] >= datetime(2013, 1, 1)]
# print(train.head(), test.head())
X_cols = ["day_5", "day_30", "std_5"]
y_col = "Close"
lr = LinearRegression()
lr.fit(train[X_cols], train[y_col])
yhat = lr.predict(test[X_cols])
mse = mean_squared_error(yhat, test[y_col])
rmse = mse/len(yhat)
score = lr.score(test[X_cols], test[y_col])
print(rmse, score)
plt.scatter(yhat, test[y_col], c="k", s=1)
plt.plot([.95*yhat.min(), 1.05*yhat.max()], [.95*yhat.min(), 1.05*yhat.max()], c="r")
plt.show()
- It relies on hard-code iloc indices, which is hard to read or maintain. How can I change it to column names/row names?
- The codes look messy. Any advice to improve it?
python pandas
New contributor
$endgroup$
add a comment |
$begingroup$
I'm working on a simple statistics problem with Pandas
and sklearn
. I'm aware that my code is ugly, but how can I improve it?
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
df = pd.read_csv("sphist.csv")
df["Date"] = pd.to_datetime(df["Date"])
df.sort_values(["Date"], inplace=True)
df["day_5"] = np.nan
df["day_30"] = np.nan
df["std_5"] = np.nan
for i in range(30, len(df)):
last_5 = df.iloc[i-5:i, 4]
last_30 = df.iloc[i-30:i, 4]
df.iloc[i, -3] = last_5.mean()
df.iloc[i, -2] = last_30.mean()
df.iloc[i, -1] = last_5.std()
df = df.iloc[30:]
df.dropna(axis=0, inplace=True)
train = df[df["Date"] < datetime(2013, 1, 1)]
test = df[df["Date"] >= datetime(2013, 1, 1)]
# print(train.head(), test.head())
X_cols = ["day_5", "day_30", "std_5"]
y_col = "Close"
lr = LinearRegression()
lr.fit(train[X_cols], train[y_col])
yhat = lr.predict(test[X_cols])
mse = mean_squared_error(yhat, test[y_col])
rmse = mse/len(yhat)
score = lr.score(test[X_cols], test[y_col])
print(rmse, score)
plt.scatter(yhat, test[y_col], c="k", s=1)
plt.plot([.95*yhat.min(), 1.05*yhat.max()], [.95*yhat.min(), 1.05*yhat.max()], c="r")
plt.show()
- It relies on hard-code iloc indices, which is hard to read or maintain. How can I change it to column names/row names?
- The codes look messy. Any advice to improve it?
python pandas
New contributor
$endgroup$
I'm working on a simple statistics problem with Pandas
and sklearn
. I'm aware that my code is ugly, but how can I improve it?
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
df = pd.read_csv("sphist.csv")
df["Date"] = pd.to_datetime(df["Date"])
df.sort_values(["Date"], inplace=True)
df["day_5"] = np.nan
df["day_30"] = np.nan
df["std_5"] = np.nan
for i in range(30, len(df)):
last_5 = df.iloc[i-5:i, 4]
last_30 = df.iloc[i-30:i, 4]
df.iloc[i, -3] = last_5.mean()
df.iloc[i, -2] = last_30.mean()
df.iloc[i, -1] = last_5.std()
df = df.iloc[30:]
df.dropna(axis=0, inplace=True)
train = df[df["Date"] < datetime(2013, 1, 1)]
test = df[df["Date"] >= datetime(2013, 1, 1)]
# print(train.head(), test.head())
X_cols = ["day_5", "day_30", "std_5"]
y_col = "Close"
lr = LinearRegression()
lr.fit(train[X_cols], train[y_col])
yhat = lr.predict(test[X_cols])
mse = mean_squared_error(yhat, test[y_col])
rmse = mse/len(yhat)
score = lr.score(test[X_cols], test[y_col])
print(rmse, score)
plt.scatter(yhat, test[y_col], c="k", s=1)
plt.plot([.95*yhat.min(), 1.05*yhat.max()], [.95*yhat.min(), 1.05*yhat.max()], c="r")
plt.show()
- It relies on hard-code iloc indices, which is hard to read or maintain. How can I change it to column names/row names?
- The codes look messy. Any advice to improve it?
python pandas
python pandas
New contributor
New contributor
New contributor
asked 5 mins ago
BurgerBurglarBurgerBurglar
1
1
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
BurgerBurglar is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f212043%2flinear-regression-on-pandas%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
BurgerBurglar is a new contributor. Be nice, and check out our Code of Conduct.
BurgerBurglar is a new contributor. Be nice, and check out our Code of Conduct.
BurgerBurglar is a new contributor. Be nice, and check out our Code of Conduct.
BurgerBurglar is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f212043%2flinear-regression-on-pandas%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown