Using fillna to replace missing data
When I am trying to use fillna to replace NaNs in the columns with means, the NaNs changed from float64
to object
, showing:
bound method Series.mean of 0 NaNn1
Here is the code:
mean = df['texture_mean'].mean
df['texture_mean'] = df['texture_mean'].fillna(mean)`
python pandas missing-data
add a comment |
When I am trying to use fillna to replace NaNs in the columns with means, the NaNs changed from float64
to object
, showing:
bound method Series.mean of 0 NaNn1
Here is the code:
mean = df['texture_mean'].mean
df['texture_mean'] = df['texture_mean'].fillna(mean)`
python pandas missing-data
mean
is a method, so you should call it using parenthesismean = df['texture_mean'].mean()
. BTW, the stacktrace indicates the line where the error raises. Using this information is a good hint on what's going on.
– FabienP
Nov 25 '18 at 11:06
add a comment |
When I am trying to use fillna to replace NaNs in the columns with means, the NaNs changed from float64
to object
, showing:
bound method Series.mean of 0 NaNn1
Here is the code:
mean = df['texture_mean'].mean
df['texture_mean'] = df['texture_mean'].fillna(mean)`
python pandas missing-data
When I am trying to use fillna to replace NaNs in the columns with means, the NaNs changed from float64
to object
, showing:
bound method Series.mean of 0 NaNn1
Here is the code:
mean = df['texture_mean'].mean
df['texture_mean'] = df['texture_mean'].fillna(mean)`
python pandas missing-data
python pandas missing-data
edited Nov 25 '18 at 10:52
TeeKea
3,22851832
3,22851832
asked Nov 25 '18 at 1:08
shabasshabas
1
1
mean
is a method, so you should call it using parenthesismean = df['texture_mean'].mean()
. BTW, the stacktrace indicates the line where the error raises. Using this information is a good hint on what's going on.
– FabienP
Nov 25 '18 at 11:06
add a comment |
mean
is a method, so you should call it using parenthesismean = df['texture_mean'].mean()
. BTW, the stacktrace indicates the line where the error raises. Using this information is a good hint on what's going on.
– FabienP
Nov 25 '18 at 11:06
mean
is a method, so you should call it using parenthesis mean = df['texture_mean'].mean()
. BTW, the stacktrace indicates the line where the error raises. Using this information is a good hint on what's going on.– FabienP
Nov 25 '18 at 11:06
mean
is a method, so you should call it using parenthesis mean = df['texture_mean'].mean()
. BTW, the stacktrace indicates the line where the error raises. Using this information is a good hint on what's going on.– FabienP
Nov 25 '18 at 11:06
add a comment |
1 Answer
1
active
oldest
votes
You cannot use mean = df['texture_mean'].mean
. This is where the problem lies. The following code will work -
df=pd.DataFrame({'texture_mean':[2,4,None,6,1,None],'A':[1,2,3,4,5,None]}) # Example
df
A texture_mean
0 1.0 2.0
1 2.0 4.0
2 3.0 NaN
3 4.0 6.0
4 5.0 1.0
5 NaN NaN
df['texture_mean']=df['texture_mean'].fillna(df['texture_mean'].mean())
df
A texture_mean
0 1.0 2.00
1 2.0 4.00
2 3.0 3.25
3 4.0 6.00
4 5.0 1.00
5 NaN 3.25
In case you want to replace all the NaNs with the respective means of that column in all columns, then just do this -
df=df.fillna(df.mean())
df
A texture_mean
0 1.0 2.00
1 2.0 4.00
2 3.0 3.25
3 4.0 6.00
4 5.0 1.00
5 3.0 3.25
Let me know if this is what you want.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53463829%2fusing-fillna-to-replace-missing-data%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You cannot use mean = df['texture_mean'].mean
. This is where the problem lies. The following code will work -
df=pd.DataFrame({'texture_mean':[2,4,None,6,1,None],'A':[1,2,3,4,5,None]}) # Example
df
A texture_mean
0 1.0 2.0
1 2.0 4.0
2 3.0 NaN
3 4.0 6.0
4 5.0 1.0
5 NaN NaN
df['texture_mean']=df['texture_mean'].fillna(df['texture_mean'].mean())
df
A texture_mean
0 1.0 2.00
1 2.0 4.00
2 3.0 3.25
3 4.0 6.00
4 5.0 1.00
5 NaN 3.25
In case you want to replace all the NaNs with the respective means of that column in all columns, then just do this -
df=df.fillna(df.mean())
df
A texture_mean
0 1.0 2.00
1 2.0 4.00
2 3.0 3.25
3 4.0 6.00
4 5.0 1.00
5 3.0 3.25
Let me know if this is what you want.
add a comment |
You cannot use mean = df['texture_mean'].mean
. This is where the problem lies. The following code will work -
df=pd.DataFrame({'texture_mean':[2,4,None,6,1,None],'A':[1,2,3,4,5,None]}) # Example
df
A texture_mean
0 1.0 2.0
1 2.0 4.0
2 3.0 NaN
3 4.0 6.0
4 5.0 1.0
5 NaN NaN
df['texture_mean']=df['texture_mean'].fillna(df['texture_mean'].mean())
df
A texture_mean
0 1.0 2.00
1 2.0 4.00
2 3.0 3.25
3 4.0 6.00
4 5.0 1.00
5 NaN 3.25
In case you want to replace all the NaNs with the respective means of that column in all columns, then just do this -
df=df.fillna(df.mean())
df
A texture_mean
0 1.0 2.00
1 2.0 4.00
2 3.0 3.25
3 4.0 6.00
4 5.0 1.00
5 3.0 3.25
Let me know if this is what you want.
add a comment |
You cannot use mean = df['texture_mean'].mean
. This is where the problem lies. The following code will work -
df=pd.DataFrame({'texture_mean':[2,4,None,6,1,None],'A':[1,2,3,4,5,None]}) # Example
df
A texture_mean
0 1.0 2.0
1 2.0 4.0
2 3.0 NaN
3 4.0 6.0
4 5.0 1.0
5 NaN NaN
df['texture_mean']=df['texture_mean'].fillna(df['texture_mean'].mean())
df
A texture_mean
0 1.0 2.00
1 2.0 4.00
2 3.0 3.25
3 4.0 6.00
4 5.0 1.00
5 NaN 3.25
In case you want to replace all the NaNs with the respective means of that column in all columns, then just do this -
df=df.fillna(df.mean())
df
A texture_mean
0 1.0 2.00
1 2.0 4.00
2 3.0 3.25
3 4.0 6.00
4 5.0 1.00
5 3.0 3.25
Let me know if this is what you want.
You cannot use mean = df['texture_mean'].mean
. This is where the problem lies. The following code will work -
df=pd.DataFrame({'texture_mean':[2,4,None,6,1,None],'A':[1,2,3,4,5,None]}) # Example
df
A texture_mean
0 1.0 2.0
1 2.0 4.0
2 3.0 NaN
3 4.0 6.0
4 5.0 1.0
5 NaN NaN
df['texture_mean']=df['texture_mean'].fillna(df['texture_mean'].mean())
df
A texture_mean
0 1.0 2.00
1 2.0 4.00
2 3.0 3.25
3 4.0 6.00
4 5.0 1.00
5 NaN 3.25
In case you want to replace all the NaNs with the respective means of that column in all columns, then just do this -
df=df.fillna(df.mean())
df
A texture_mean
0 1.0 2.00
1 2.0 4.00
2 3.0 3.25
3 4.0 6.00
4 5.0 1.00
5 3.0 3.25
Let me know if this is what you want.
answered Nov 25 '18 at 12:15
cph_stocph_sto
2,3012421
2,3012421
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53463829%2fusing-fillna-to-replace-missing-data%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
mean
is a method, so you should call it using parenthesismean = df['texture_mean'].mean()
. BTW, the stacktrace indicates the line where the error raises. Using this information is a good hint on what's going on.– FabienP
Nov 25 '18 at 11:06