Why Skorch show NAN in the every epoch?
up vote
1
down vote
favorite
I want to create my own dataset class based on Dataset class of Skorch because I want to differentiate categorical columns and continuous columns. These categorical columns will be passed through the embedding layers in the model. The result is weird because it show NAN
like this:
epoch train_loss valid_loss dur
------- ------------ ------------ ------
1 nan nan 0.2187
2 nan nan 0.1719
3 nan nan 0.1719
4 nan nan 0.1562
5 nan nan 0.1406
Can you help me fix it ? I am using data from this kaggle:
Here
from skorch import NeuralNetRegressor
from skorch.dataset import Dataset
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
class TabularDataset(Dataset):
def __init__(self, data, cat_cols=None, output_col=None):
self.n = data.shape[0]
if output_col:
self.y = data[output_col].astype(np.float32).values.reshape(-1, 1)
else:
self.y = np.zeros((self.n, 1))
self.cat_cols = cat_cols if cat_cols else
self.cont_cols = [col for col in data.columns
if col not in self.cat_cols + [output_col]]
if self.cont_cols:
self.cont_X = data[self.cont_cols].astype(np.float32).values
else:
self.cont_X = np.zeros((self.n, 1))
if self.cat_cols:
self.cat_X = data[self.cat_cols].astype(np.int64).values
else:
self.cat_X = np.zeros((self.n, 1))
def __len__(self):
# Denotes the total number of sampoes
return self.n
def __getitem__(self, idx):
# generates one sample of data
return [self.cont_X[idx], self.cat_X[idx]], self.y[idx]
class FeedForwardNN(nn.Module):
def __init__(self, emb_dims, no_of_cont, lin_layer_sizes,
output_size, emb_dropout, lin_layer_dropouts):
"""
Parameters
----------
emb_dims: List of two element tuples
This list will contain a two element tuple for each
categorical feature. The first element of a tuple will
denote the number of unique values of the categorical
feature. The second element will denote the embedding
dimension to be used for that feature.
no_of_cont: Integer
The number of continuous features in the data.
lin_layer_sizes: List of integers.
The size of each linear layer. The length will be equal
to the total number
of linear layers in the network.
output_size: Integer
The size of the final output.
emb_dropout: Float
The dropout to be used after the embedding layers.
lin_layer_dropouts: List of floats
The dropouts to be used after each linear layer.
"""
super().__init__()
# Embedding layers
self.emb_layers = nn.ModuleList([nn.Embedding(x, y)
for x, y in emb_dims])
no_of_embs = sum([y for x, y in emb_dims])
self.no_of_embs = no_of_embs
self.no_of_cont = no_of_cont
# Linear Layers
first_lin_layer = nn.Linear(self.no_of_embs + self.no_of_cont,
lin_layer_sizes[0])
self.lin_layers =
nn.ModuleList([first_lin_layer] +
[nn.Linear(lin_layer_sizes[i], lin_layer_sizes[i + 1])
for i in range(len(lin_layer_sizes) - 1)])
for lin_layer in self.lin_layers:
nn.init.kaiming_normal_(lin_layer.weight.data)
# Output Layer
self.output_layer = nn.Linear(lin_layer_sizes[-1],
output_size)
nn.init.kaiming_normal_(self.output_layer.weight.data)
# Batch Norm Layers
self.first_bn_layer = nn.BatchNorm1d(self.no_of_cont)
self.bn_layers = nn.ModuleList([nn.BatchNorm1d(size)
for size in lin_layer_sizes])
# Dropout Layers
self.emb_dropout_layer = nn.Dropout(emb_dropout)
self.droput_layers = nn.ModuleList([nn.Dropout(size)
for size in lin_layer_dropouts])
def forward(self, X):
cont_data = X[0]
cat_data = X[1]
if self.no_of_embs != 0:
x = [emb_layer(cat_data[:, i])
for i, emb_layer in enumerate(self.emb_layers)]
x = torch.cat(x, 1)
x = self.emb_dropout_layer(x)
if self.no_of_cont != 0:
normalized_cont_data = self.first_bn_layer(cont_data)
if self.no_of_embs != 0:
x = torch.cat([x, normalized_cont_data], 1)
else:
x = normalized_cont_data
for lin_layer, dropout_layer, bn_layer in
zip(self.lin_layers, self.droput_layers, self.bn_layers):
x = F.relu(lin_layer(x))
x = bn_layer(x)
x = dropout_layer(x)
x = self.output_layer(x)
return x
# Read data
data = pd.read_csv("data/train.csv", usecols=["SalePrice", "MSSubClass", "MSZoning", "LotFrontage", "LotArea",
"Street", "YearBuilt", "LotShape", "1stFlrSF", "2ndFlrSF"]).dropna()
categorical_features = ["MSSubClass", "MSZoning", "Street", "LotShape", "YearBuilt"]
output_feature = "SalePrice"
# Label Encode Categorial Features
label_encoders = {}
for cat_col in categorical_features:
label_encoders[cat_col] = LabelEncoder()
data[cat_col] = label_encoders[cat_col].fit_transform(data[cat_col])
# feed Forward NN
cat_dims = [int(data[col].nunique()) for col in categorical_features]
emb_dims = [(x, min(50, (x + 1) // 2)) for x in cat_dims]
net = FeedForwardNN(emb_dims, no_of_cont=4, lin_layer_sizes=[50, 100],
output_size=1, emb_dropout=0.04,
lin_layer_dropouts=[0.001, 0.01])
# Fit
ds = TabularDataset(data=data, cat_cols=categorical_features,
output_col=output_feature)
X = data.drop(['SalePrice'], axis=1)
y = data['SalePrice'].values.reshape(-1, 1)
net = NeuralNetRegressor(
net,
max_epochs=5,
lr=0.1,
dataset=ds
)
net.fit(X, y)
python scikit-learn pytorch skorch
add a comment |
up vote
1
down vote
favorite
I want to create my own dataset class based on Dataset class of Skorch because I want to differentiate categorical columns and continuous columns. These categorical columns will be passed through the embedding layers in the model. The result is weird because it show NAN
like this:
epoch train_loss valid_loss dur
------- ------------ ------------ ------
1 nan nan 0.2187
2 nan nan 0.1719
3 nan nan 0.1719
4 nan nan 0.1562
5 nan nan 0.1406
Can you help me fix it ? I am using data from this kaggle:
Here
from skorch import NeuralNetRegressor
from skorch.dataset import Dataset
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
class TabularDataset(Dataset):
def __init__(self, data, cat_cols=None, output_col=None):
self.n = data.shape[0]
if output_col:
self.y = data[output_col].astype(np.float32).values.reshape(-1, 1)
else:
self.y = np.zeros((self.n, 1))
self.cat_cols = cat_cols if cat_cols else
self.cont_cols = [col for col in data.columns
if col not in self.cat_cols + [output_col]]
if self.cont_cols:
self.cont_X = data[self.cont_cols].astype(np.float32).values
else:
self.cont_X = np.zeros((self.n, 1))
if self.cat_cols:
self.cat_X = data[self.cat_cols].astype(np.int64).values
else:
self.cat_X = np.zeros((self.n, 1))
def __len__(self):
# Denotes the total number of sampoes
return self.n
def __getitem__(self, idx):
# generates one sample of data
return [self.cont_X[idx], self.cat_X[idx]], self.y[idx]
class FeedForwardNN(nn.Module):
def __init__(self, emb_dims, no_of_cont, lin_layer_sizes,
output_size, emb_dropout, lin_layer_dropouts):
"""
Parameters
----------
emb_dims: List of two element tuples
This list will contain a two element tuple for each
categorical feature. The first element of a tuple will
denote the number of unique values of the categorical
feature. The second element will denote the embedding
dimension to be used for that feature.
no_of_cont: Integer
The number of continuous features in the data.
lin_layer_sizes: List of integers.
The size of each linear layer. The length will be equal
to the total number
of linear layers in the network.
output_size: Integer
The size of the final output.
emb_dropout: Float
The dropout to be used after the embedding layers.
lin_layer_dropouts: List of floats
The dropouts to be used after each linear layer.
"""
super().__init__()
# Embedding layers
self.emb_layers = nn.ModuleList([nn.Embedding(x, y)
for x, y in emb_dims])
no_of_embs = sum([y for x, y in emb_dims])
self.no_of_embs = no_of_embs
self.no_of_cont = no_of_cont
# Linear Layers
first_lin_layer = nn.Linear(self.no_of_embs + self.no_of_cont,
lin_layer_sizes[0])
self.lin_layers =
nn.ModuleList([first_lin_layer] +
[nn.Linear(lin_layer_sizes[i], lin_layer_sizes[i + 1])
for i in range(len(lin_layer_sizes) - 1)])
for lin_layer in self.lin_layers:
nn.init.kaiming_normal_(lin_layer.weight.data)
# Output Layer
self.output_layer = nn.Linear(lin_layer_sizes[-1],
output_size)
nn.init.kaiming_normal_(self.output_layer.weight.data)
# Batch Norm Layers
self.first_bn_layer = nn.BatchNorm1d(self.no_of_cont)
self.bn_layers = nn.ModuleList([nn.BatchNorm1d(size)
for size in lin_layer_sizes])
# Dropout Layers
self.emb_dropout_layer = nn.Dropout(emb_dropout)
self.droput_layers = nn.ModuleList([nn.Dropout(size)
for size in lin_layer_dropouts])
def forward(self, X):
cont_data = X[0]
cat_data = X[1]
if self.no_of_embs != 0:
x = [emb_layer(cat_data[:, i])
for i, emb_layer in enumerate(self.emb_layers)]
x = torch.cat(x, 1)
x = self.emb_dropout_layer(x)
if self.no_of_cont != 0:
normalized_cont_data = self.first_bn_layer(cont_data)
if self.no_of_embs != 0:
x = torch.cat([x, normalized_cont_data], 1)
else:
x = normalized_cont_data
for lin_layer, dropout_layer, bn_layer in
zip(self.lin_layers, self.droput_layers, self.bn_layers):
x = F.relu(lin_layer(x))
x = bn_layer(x)
x = dropout_layer(x)
x = self.output_layer(x)
return x
# Read data
data = pd.read_csv("data/train.csv", usecols=["SalePrice", "MSSubClass", "MSZoning", "LotFrontage", "LotArea",
"Street", "YearBuilt", "LotShape", "1stFlrSF", "2ndFlrSF"]).dropna()
categorical_features = ["MSSubClass", "MSZoning", "Street", "LotShape", "YearBuilt"]
output_feature = "SalePrice"
# Label Encode Categorial Features
label_encoders = {}
for cat_col in categorical_features:
label_encoders[cat_col] = LabelEncoder()
data[cat_col] = label_encoders[cat_col].fit_transform(data[cat_col])
# feed Forward NN
cat_dims = [int(data[col].nunique()) for col in categorical_features]
emb_dims = [(x, min(50, (x + 1) // 2)) for x in cat_dims]
net = FeedForwardNN(emb_dims, no_of_cont=4, lin_layer_sizes=[50, 100],
output_size=1, emb_dropout=0.04,
lin_layer_dropouts=[0.001, 0.01])
# Fit
ds = TabularDataset(data=data, cat_cols=categorical_features,
output_col=output_feature)
X = data.drop(['SalePrice'], axis=1)
y = data['SalePrice'].values.reshape(-1, 1)
net = NeuralNetRegressor(
net,
max_epochs=5,
lr=0.1,
dataset=ds
)
net.fit(X, y)
python scikit-learn pytorch skorch
1
Can you reduce the problem a bit? There are a number of reasons why this could happen to you, e.g. non-normalized targets with a wide range,NaN
in your data, exploding gradients in your network. Since you are using PyTorch you can easily usepdb
orprint()
to inspect intermediate values to narrow the question down a bit.
– nemo
Nov 20 at 13:53
Thank you for your comment. I will try to narrow the question
– Nguyen Nguyen
Nov 21 at 2:51
Hi, I used data.info() and don't see missing value. Also, I normalize continuous features but still got NAN result @nemo
– Nguyen Nguyen
Nov 21 at 3:33
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I want to create my own dataset class based on Dataset class of Skorch because I want to differentiate categorical columns and continuous columns. These categorical columns will be passed through the embedding layers in the model. The result is weird because it show NAN
like this:
epoch train_loss valid_loss dur
------- ------------ ------------ ------
1 nan nan 0.2187
2 nan nan 0.1719
3 nan nan 0.1719
4 nan nan 0.1562
5 nan nan 0.1406
Can you help me fix it ? I am using data from this kaggle:
Here
from skorch import NeuralNetRegressor
from skorch.dataset import Dataset
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
class TabularDataset(Dataset):
def __init__(self, data, cat_cols=None, output_col=None):
self.n = data.shape[0]
if output_col:
self.y = data[output_col].astype(np.float32).values.reshape(-1, 1)
else:
self.y = np.zeros((self.n, 1))
self.cat_cols = cat_cols if cat_cols else
self.cont_cols = [col for col in data.columns
if col not in self.cat_cols + [output_col]]
if self.cont_cols:
self.cont_X = data[self.cont_cols].astype(np.float32).values
else:
self.cont_X = np.zeros((self.n, 1))
if self.cat_cols:
self.cat_X = data[self.cat_cols].astype(np.int64).values
else:
self.cat_X = np.zeros((self.n, 1))
def __len__(self):
# Denotes the total number of sampoes
return self.n
def __getitem__(self, idx):
# generates one sample of data
return [self.cont_X[idx], self.cat_X[idx]], self.y[idx]
class FeedForwardNN(nn.Module):
def __init__(self, emb_dims, no_of_cont, lin_layer_sizes,
output_size, emb_dropout, lin_layer_dropouts):
"""
Parameters
----------
emb_dims: List of two element tuples
This list will contain a two element tuple for each
categorical feature. The first element of a tuple will
denote the number of unique values of the categorical
feature. The second element will denote the embedding
dimension to be used for that feature.
no_of_cont: Integer
The number of continuous features in the data.
lin_layer_sizes: List of integers.
The size of each linear layer. The length will be equal
to the total number
of linear layers in the network.
output_size: Integer
The size of the final output.
emb_dropout: Float
The dropout to be used after the embedding layers.
lin_layer_dropouts: List of floats
The dropouts to be used after each linear layer.
"""
super().__init__()
# Embedding layers
self.emb_layers = nn.ModuleList([nn.Embedding(x, y)
for x, y in emb_dims])
no_of_embs = sum([y for x, y in emb_dims])
self.no_of_embs = no_of_embs
self.no_of_cont = no_of_cont
# Linear Layers
first_lin_layer = nn.Linear(self.no_of_embs + self.no_of_cont,
lin_layer_sizes[0])
self.lin_layers =
nn.ModuleList([first_lin_layer] +
[nn.Linear(lin_layer_sizes[i], lin_layer_sizes[i + 1])
for i in range(len(lin_layer_sizes) - 1)])
for lin_layer in self.lin_layers:
nn.init.kaiming_normal_(lin_layer.weight.data)
# Output Layer
self.output_layer = nn.Linear(lin_layer_sizes[-1],
output_size)
nn.init.kaiming_normal_(self.output_layer.weight.data)
# Batch Norm Layers
self.first_bn_layer = nn.BatchNorm1d(self.no_of_cont)
self.bn_layers = nn.ModuleList([nn.BatchNorm1d(size)
for size in lin_layer_sizes])
# Dropout Layers
self.emb_dropout_layer = nn.Dropout(emb_dropout)
self.droput_layers = nn.ModuleList([nn.Dropout(size)
for size in lin_layer_dropouts])
def forward(self, X):
cont_data = X[0]
cat_data = X[1]
if self.no_of_embs != 0:
x = [emb_layer(cat_data[:, i])
for i, emb_layer in enumerate(self.emb_layers)]
x = torch.cat(x, 1)
x = self.emb_dropout_layer(x)
if self.no_of_cont != 0:
normalized_cont_data = self.first_bn_layer(cont_data)
if self.no_of_embs != 0:
x = torch.cat([x, normalized_cont_data], 1)
else:
x = normalized_cont_data
for lin_layer, dropout_layer, bn_layer in
zip(self.lin_layers, self.droput_layers, self.bn_layers):
x = F.relu(lin_layer(x))
x = bn_layer(x)
x = dropout_layer(x)
x = self.output_layer(x)
return x
# Read data
data = pd.read_csv("data/train.csv", usecols=["SalePrice", "MSSubClass", "MSZoning", "LotFrontage", "LotArea",
"Street", "YearBuilt", "LotShape", "1stFlrSF", "2ndFlrSF"]).dropna()
categorical_features = ["MSSubClass", "MSZoning", "Street", "LotShape", "YearBuilt"]
output_feature = "SalePrice"
# Label Encode Categorial Features
label_encoders = {}
for cat_col in categorical_features:
label_encoders[cat_col] = LabelEncoder()
data[cat_col] = label_encoders[cat_col].fit_transform(data[cat_col])
# feed Forward NN
cat_dims = [int(data[col].nunique()) for col in categorical_features]
emb_dims = [(x, min(50, (x + 1) // 2)) for x in cat_dims]
net = FeedForwardNN(emb_dims, no_of_cont=4, lin_layer_sizes=[50, 100],
output_size=1, emb_dropout=0.04,
lin_layer_dropouts=[0.001, 0.01])
# Fit
ds = TabularDataset(data=data, cat_cols=categorical_features,
output_col=output_feature)
X = data.drop(['SalePrice'], axis=1)
y = data['SalePrice'].values.reshape(-1, 1)
net = NeuralNetRegressor(
net,
max_epochs=5,
lr=0.1,
dataset=ds
)
net.fit(X, y)
python scikit-learn pytorch skorch
I want to create my own dataset class based on Dataset class of Skorch because I want to differentiate categorical columns and continuous columns. These categorical columns will be passed through the embedding layers in the model. The result is weird because it show NAN
like this:
epoch train_loss valid_loss dur
------- ------------ ------------ ------
1 nan nan 0.2187
2 nan nan 0.1719
3 nan nan 0.1719
4 nan nan 0.1562
5 nan nan 0.1406
Can you help me fix it ? I am using data from this kaggle:
Here
from skorch import NeuralNetRegressor
from skorch.dataset import Dataset
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
class TabularDataset(Dataset):
def __init__(self, data, cat_cols=None, output_col=None):
self.n = data.shape[0]
if output_col:
self.y = data[output_col].astype(np.float32).values.reshape(-1, 1)
else:
self.y = np.zeros((self.n, 1))
self.cat_cols = cat_cols if cat_cols else
self.cont_cols = [col for col in data.columns
if col not in self.cat_cols + [output_col]]
if self.cont_cols:
self.cont_X = data[self.cont_cols].astype(np.float32).values
else:
self.cont_X = np.zeros((self.n, 1))
if self.cat_cols:
self.cat_X = data[self.cat_cols].astype(np.int64).values
else:
self.cat_X = np.zeros((self.n, 1))
def __len__(self):
# Denotes the total number of sampoes
return self.n
def __getitem__(self, idx):
# generates one sample of data
return [self.cont_X[idx], self.cat_X[idx]], self.y[idx]
class FeedForwardNN(nn.Module):
def __init__(self, emb_dims, no_of_cont, lin_layer_sizes,
output_size, emb_dropout, lin_layer_dropouts):
"""
Parameters
----------
emb_dims: List of two element tuples
This list will contain a two element tuple for each
categorical feature. The first element of a tuple will
denote the number of unique values of the categorical
feature. The second element will denote the embedding
dimension to be used for that feature.
no_of_cont: Integer
The number of continuous features in the data.
lin_layer_sizes: List of integers.
The size of each linear layer. The length will be equal
to the total number
of linear layers in the network.
output_size: Integer
The size of the final output.
emb_dropout: Float
The dropout to be used after the embedding layers.
lin_layer_dropouts: List of floats
The dropouts to be used after each linear layer.
"""
super().__init__()
# Embedding layers
self.emb_layers = nn.ModuleList([nn.Embedding(x, y)
for x, y in emb_dims])
no_of_embs = sum([y for x, y in emb_dims])
self.no_of_embs = no_of_embs
self.no_of_cont = no_of_cont
# Linear Layers
first_lin_layer = nn.Linear(self.no_of_embs + self.no_of_cont,
lin_layer_sizes[0])
self.lin_layers =
nn.ModuleList([first_lin_layer] +
[nn.Linear(lin_layer_sizes[i], lin_layer_sizes[i + 1])
for i in range(len(lin_layer_sizes) - 1)])
for lin_layer in self.lin_layers:
nn.init.kaiming_normal_(lin_layer.weight.data)
# Output Layer
self.output_layer = nn.Linear(lin_layer_sizes[-1],
output_size)
nn.init.kaiming_normal_(self.output_layer.weight.data)
# Batch Norm Layers
self.first_bn_layer = nn.BatchNorm1d(self.no_of_cont)
self.bn_layers = nn.ModuleList([nn.BatchNorm1d(size)
for size in lin_layer_sizes])
# Dropout Layers
self.emb_dropout_layer = nn.Dropout(emb_dropout)
self.droput_layers = nn.ModuleList([nn.Dropout(size)
for size in lin_layer_dropouts])
def forward(self, X):
cont_data = X[0]
cat_data = X[1]
if self.no_of_embs != 0:
x = [emb_layer(cat_data[:, i])
for i, emb_layer in enumerate(self.emb_layers)]
x = torch.cat(x, 1)
x = self.emb_dropout_layer(x)
if self.no_of_cont != 0:
normalized_cont_data = self.first_bn_layer(cont_data)
if self.no_of_embs != 0:
x = torch.cat([x, normalized_cont_data], 1)
else:
x = normalized_cont_data
for lin_layer, dropout_layer, bn_layer in
zip(self.lin_layers, self.droput_layers, self.bn_layers):
x = F.relu(lin_layer(x))
x = bn_layer(x)
x = dropout_layer(x)
x = self.output_layer(x)
return x
# Read data
data = pd.read_csv("data/train.csv", usecols=["SalePrice", "MSSubClass", "MSZoning", "LotFrontage", "LotArea",
"Street", "YearBuilt", "LotShape", "1stFlrSF", "2ndFlrSF"]).dropna()
categorical_features = ["MSSubClass", "MSZoning", "Street", "LotShape", "YearBuilt"]
output_feature = "SalePrice"
# Label Encode Categorial Features
label_encoders = {}
for cat_col in categorical_features:
label_encoders[cat_col] = LabelEncoder()
data[cat_col] = label_encoders[cat_col].fit_transform(data[cat_col])
# feed Forward NN
cat_dims = [int(data[col].nunique()) for col in categorical_features]
emb_dims = [(x, min(50, (x + 1) // 2)) for x in cat_dims]
net = FeedForwardNN(emb_dims, no_of_cont=4, lin_layer_sizes=[50, 100],
output_size=1, emb_dropout=0.04,
lin_layer_dropouts=[0.001, 0.01])
# Fit
ds = TabularDataset(data=data, cat_cols=categorical_features,
output_col=output_feature)
X = data.drop(['SalePrice'], axis=1)
y = data['SalePrice'].values.reshape(-1, 1)
net = NeuralNetRegressor(
net,
max_epochs=5,
lr=0.1,
dataset=ds
)
net.fit(X, y)
python scikit-learn pytorch skorch
python scikit-learn pytorch skorch
asked Nov 20 at 4:29
Nguyen Nguyen
61
61
1
Can you reduce the problem a bit? There are a number of reasons why this could happen to you, e.g. non-normalized targets with a wide range,NaN
in your data, exploding gradients in your network. Since you are using PyTorch you can easily usepdb
orprint()
to inspect intermediate values to narrow the question down a bit.
– nemo
Nov 20 at 13:53
Thank you for your comment. I will try to narrow the question
– Nguyen Nguyen
Nov 21 at 2:51
Hi, I used data.info() and don't see missing value. Also, I normalize continuous features but still got NAN result @nemo
– Nguyen Nguyen
Nov 21 at 3:33
add a comment |
1
Can you reduce the problem a bit? There are a number of reasons why this could happen to you, e.g. non-normalized targets with a wide range,NaN
in your data, exploding gradients in your network. Since you are using PyTorch you can easily usepdb
orprint()
to inspect intermediate values to narrow the question down a bit.
– nemo
Nov 20 at 13:53
Thank you for your comment. I will try to narrow the question
– Nguyen Nguyen
Nov 21 at 2:51
Hi, I used data.info() and don't see missing value. Also, I normalize continuous features but still got NAN result @nemo
– Nguyen Nguyen
Nov 21 at 3:33
1
1
Can you reduce the problem a bit? There are a number of reasons why this could happen to you, e.g. non-normalized targets with a wide range,
NaN
in your data, exploding gradients in your network. Since you are using PyTorch you can easily use pdb
or print()
to inspect intermediate values to narrow the question down a bit.– nemo
Nov 20 at 13:53
Can you reduce the problem a bit? There are a number of reasons why this could happen to you, e.g. non-normalized targets with a wide range,
NaN
in your data, exploding gradients in your network. Since you are using PyTorch you can easily use pdb
or print()
to inspect intermediate values to narrow the question down a bit.– nemo
Nov 20 at 13:53
Thank you for your comment. I will try to narrow the question
– Nguyen Nguyen
Nov 21 at 2:51
Thank you for your comment. I will try to narrow the question
– Nguyen Nguyen
Nov 21 at 2:51
Hi, I used data.info() and don't see missing value. Also, I normalize continuous features but still got NAN result @nemo
– Nguyen Nguyen
Nov 21 at 3:33
Hi, I used data.info() and don't see missing value. Also, I normalize continuous features but still got NAN result @nemo
– Nguyen Nguyen
Nov 21 at 3:33
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
The problem is not with skorch but your data. You have to scale your inputs and, in this case, especially the targets to avoid huge losses and exploding gradients. As a start I suggest using, for example, sklearn.preprocessing.StandardScaler
:
from sklearn.preprocessing import StandardScaler
class TabularDataset(Dataset):
def __init__(self, data, cat_cols=None, output_col=None):
self.n = data.shape[0]
# [...]
if output_col:
scaler_y = StandardScaler()
self.y = data[output_col].astype(np.float32).values.reshape(-1, 1)
scaler_y.fit(self.y)
self.y = scaler_y.transform(self.y)
# [...]
if self.cont_cols:
scaler_X_cont = StandardScaler()
self.cont_X = data[self.cont_cols].astype(np.float32).values
scaler_X_cont.fit(self.cont_X)
self.cont_X = scaler_X_cont.transform(self.cont_X)
# [...]
As a side note, you don't need X
and y
when you have a dataset that provides the actual data, you can simply pass it to net.fit
:
net = NeuralNetRegressor(
net,
max_epochs=5,
lr=0.00001,
)
net.fit(ds, y=None)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53386245%2fwhy-skorch-show-nan-in-the-every-epoch%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
The problem is not with skorch but your data. You have to scale your inputs and, in this case, especially the targets to avoid huge losses and exploding gradients. As a start I suggest using, for example, sklearn.preprocessing.StandardScaler
:
from sklearn.preprocessing import StandardScaler
class TabularDataset(Dataset):
def __init__(self, data, cat_cols=None, output_col=None):
self.n = data.shape[0]
# [...]
if output_col:
scaler_y = StandardScaler()
self.y = data[output_col].astype(np.float32).values.reshape(-1, 1)
scaler_y.fit(self.y)
self.y = scaler_y.transform(self.y)
# [...]
if self.cont_cols:
scaler_X_cont = StandardScaler()
self.cont_X = data[self.cont_cols].astype(np.float32).values
scaler_X_cont.fit(self.cont_X)
self.cont_X = scaler_X_cont.transform(self.cont_X)
# [...]
As a side note, you don't need X
and y
when you have a dataset that provides the actual data, you can simply pass it to net.fit
:
net = NeuralNetRegressor(
net,
max_epochs=5,
lr=0.00001,
)
net.fit(ds, y=None)
add a comment |
up vote
0
down vote
The problem is not with skorch but your data. You have to scale your inputs and, in this case, especially the targets to avoid huge losses and exploding gradients. As a start I suggest using, for example, sklearn.preprocessing.StandardScaler
:
from sklearn.preprocessing import StandardScaler
class TabularDataset(Dataset):
def __init__(self, data, cat_cols=None, output_col=None):
self.n = data.shape[0]
# [...]
if output_col:
scaler_y = StandardScaler()
self.y = data[output_col].astype(np.float32).values.reshape(-1, 1)
scaler_y.fit(self.y)
self.y = scaler_y.transform(self.y)
# [...]
if self.cont_cols:
scaler_X_cont = StandardScaler()
self.cont_X = data[self.cont_cols].astype(np.float32).values
scaler_X_cont.fit(self.cont_X)
self.cont_X = scaler_X_cont.transform(self.cont_X)
# [...]
As a side note, you don't need X
and y
when you have a dataset that provides the actual data, you can simply pass it to net.fit
:
net = NeuralNetRegressor(
net,
max_epochs=5,
lr=0.00001,
)
net.fit(ds, y=None)
add a comment |
up vote
0
down vote
up vote
0
down vote
The problem is not with skorch but your data. You have to scale your inputs and, in this case, especially the targets to avoid huge losses and exploding gradients. As a start I suggest using, for example, sklearn.preprocessing.StandardScaler
:
from sklearn.preprocessing import StandardScaler
class TabularDataset(Dataset):
def __init__(self, data, cat_cols=None, output_col=None):
self.n = data.shape[0]
# [...]
if output_col:
scaler_y = StandardScaler()
self.y = data[output_col].astype(np.float32).values.reshape(-1, 1)
scaler_y.fit(self.y)
self.y = scaler_y.transform(self.y)
# [...]
if self.cont_cols:
scaler_X_cont = StandardScaler()
self.cont_X = data[self.cont_cols].astype(np.float32).values
scaler_X_cont.fit(self.cont_X)
self.cont_X = scaler_X_cont.transform(self.cont_X)
# [...]
As a side note, you don't need X
and y
when you have a dataset that provides the actual data, you can simply pass it to net.fit
:
net = NeuralNetRegressor(
net,
max_epochs=5,
lr=0.00001,
)
net.fit(ds, y=None)
The problem is not with skorch but your data. You have to scale your inputs and, in this case, especially the targets to avoid huge losses and exploding gradients. As a start I suggest using, for example, sklearn.preprocessing.StandardScaler
:
from sklearn.preprocessing import StandardScaler
class TabularDataset(Dataset):
def __init__(self, data, cat_cols=None, output_col=None):
self.n = data.shape[0]
# [...]
if output_col:
scaler_y = StandardScaler()
self.y = data[output_col].astype(np.float32).values.reshape(-1, 1)
scaler_y.fit(self.y)
self.y = scaler_y.transform(self.y)
# [...]
if self.cont_cols:
scaler_X_cont = StandardScaler()
self.cont_X = data[self.cont_cols].astype(np.float32).values
scaler_X_cont.fit(self.cont_X)
self.cont_X = scaler_X_cont.transform(self.cont_X)
# [...]
As a side note, you don't need X
and y
when you have a dataset that provides the actual data, you can simply pass it to net.fit
:
net = NeuralNetRegressor(
net,
max_epochs=5,
lr=0.00001,
)
net.fit(ds, y=None)
answered Nov 23 at 10:13
nemo
34.9k78899
34.9k78899
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53386245%2fwhy-skorch-show-nan-in-the-every-epoch%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Can you reduce the problem a bit? There are a number of reasons why this could happen to you, e.g. non-normalized targets with a wide range,
NaN
in your data, exploding gradients in your network. Since you are using PyTorch you can easily usepdb
orprint()
to inspect intermediate values to narrow the question down a bit.– nemo
Nov 20 at 13:53
Thank you for your comment. I will try to narrow the question
– Nguyen Nguyen
Nov 21 at 2:51
Hi, I used data.info() and don't see missing value. Also, I normalize continuous features but still got NAN result @nemo
– Nguyen Nguyen
Nov 21 at 3:33