Why is DataFrame changing the datatype of all input into objects?












0















I pass numpy array and pd.Series with different data types, text, int, and floats into pd.DataFrame and the output is a DataFrame with all object datatypes. Why does it do that and is there anything I can do to preserve the original datatypes?



pd.DataFrame(np.c_[X, TotalSF, TotalBaths, HasFire], columns=(list(X.columns) + ['TotalSF', 'TotalBaths', 'HasFire']))


X is a 2-D array with some values as text and some as number.
TotalSF, TotalBaths, and HasFire are pandas Series with numbers as values.










share|improve this question




















  • 2





    Note that the datatype of a dataframe column (or series) will only be float if all rows in the column or series are floats. Similar for integer dtypes. Basically if even one row of a series is a string/object then the datatype of the whole column will be object.

    – JohnE
    Nov 24 '18 at 1:15
















0















I pass numpy array and pd.Series with different data types, text, int, and floats into pd.DataFrame and the output is a DataFrame with all object datatypes. Why does it do that and is there anything I can do to preserve the original datatypes?



pd.DataFrame(np.c_[X, TotalSF, TotalBaths, HasFire], columns=(list(X.columns) + ['TotalSF', 'TotalBaths', 'HasFire']))


X is a 2-D array with some values as text and some as number.
TotalSF, TotalBaths, and HasFire are pandas Series with numbers as values.










share|improve this question




















  • 2





    Note that the datatype of a dataframe column (or series) will only be float if all rows in the column or series are floats. Similar for integer dtypes. Basically if even one row of a series is a string/object then the datatype of the whole column will be object.

    – JohnE
    Nov 24 '18 at 1:15














0












0








0








I pass numpy array and pd.Series with different data types, text, int, and floats into pd.DataFrame and the output is a DataFrame with all object datatypes. Why does it do that and is there anything I can do to preserve the original datatypes?



pd.DataFrame(np.c_[X, TotalSF, TotalBaths, HasFire], columns=(list(X.columns) + ['TotalSF', 'TotalBaths', 'HasFire']))


X is a 2-D array with some values as text and some as number.
TotalSF, TotalBaths, and HasFire are pandas Series with numbers as values.










share|improve this question
















I pass numpy array and pd.Series with different data types, text, int, and floats into pd.DataFrame and the output is a DataFrame with all object datatypes. Why does it do that and is there anything I can do to preserve the original datatypes?



pd.DataFrame(np.c_[X, TotalSF, TotalBaths, HasFire], columns=(list(X.columns) + ['TotalSF', 'TotalBaths', 'HasFire']))


X is a 2-D array with some values as text and some as number.
TotalSF, TotalBaths, and HasFire are pandas Series with numbers as values.







python pandas numpy dataframe series






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 24 '18 at 1:13









JohnE

14.2k53457




14.2k53457










asked Nov 23 '18 at 23:18









Youi RabiYoui Rabi

295




295








  • 2





    Note that the datatype of a dataframe column (or series) will only be float if all rows in the column or series are floats. Similar for integer dtypes. Basically if even one row of a series is a string/object then the datatype of the whole column will be object.

    – JohnE
    Nov 24 '18 at 1:15














  • 2





    Note that the datatype of a dataframe column (or series) will only be float if all rows in the column or series are floats. Similar for integer dtypes. Basically if even one row of a series is a string/object then the datatype of the whole column will be object.

    – JohnE
    Nov 24 '18 at 1:15








2




2





Note that the datatype of a dataframe column (or series) will only be float if all rows in the column or series are floats. Similar for integer dtypes. Basically if even one row of a series is a string/object then the datatype of the whole column will be object.

– JohnE
Nov 24 '18 at 1:15





Note that the datatype of a dataframe column (or series) will only be float if all rows in the column or series are floats. Similar for integer dtypes. Basically if even one row of a series is a string/object then the datatype of the whole column will be object.

– JohnE
Nov 24 '18 at 1:15












1 Answer
1






active

oldest

votes


















0














Dataframe workس with general datatypes, if you want to change your dataframe data type use



pandas.DataFrame.astype(target type)


track below code with and without astype method:



import pandas as pd
data = pd.DataFrame(data=[["red", "apple"], ["yellow", "orange"], ["blue", "banana"], ["green", "avocado"]],
columns=["color", "fruitN"])
# data = data.set_index("fruitN")
file_1 = ["akee", "apricot", "avocado"]
file_2 = ["avocado", "bilberry", "banana", "blackberry"]
file_3 = ["blackberry", "coconut", "cranberry"]
file_1_df = pd.DataFrame(data=file_1, columns=["type_1"])
file_2_df = pd.DataFrame(data=file_2, columns=["type_2"])
file_3_df = pd.DataFrame(data=file_3, columns=["type_3"])
l = [file_1_df, file_2_df, file_3_df]
for x, y in enumerate(l):
data['c' + str(x + 1)] = data.fruitN.isin(y.iloc[:, 0].tolist()).astype(int)

data = data["c2"].astype(int)
print(data)





share|improve this answer























    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53453798%2fwhy-is-dataframe-changing-the-datatype-of-all-input-into-objects%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    Dataframe workس with general datatypes, if you want to change your dataframe data type use



    pandas.DataFrame.astype(target type)


    track below code with and without astype method:



    import pandas as pd
    data = pd.DataFrame(data=[["red", "apple"], ["yellow", "orange"], ["blue", "banana"], ["green", "avocado"]],
    columns=["color", "fruitN"])
    # data = data.set_index("fruitN")
    file_1 = ["akee", "apricot", "avocado"]
    file_2 = ["avocado", "bilberry", "banana", "blackberry"]
    file_3 = ["blackberry", "coconut", "cranberry"]
    file_1_df = pd.DataFrame(data=file_1, columns=["type_1"])
    file_2_df = pd.DataFrame(data=file_2, columns=["type_2"])
    file_3_df = pd.DataFrame(data=file_3, columns=["type_3"])
    l = [file_1_df, file_2_df, file_3_df]
    for x, y in enumerate(l):
    data['c' + str(x + 1)] = data.fruitN.isin(y.iloc[:, 0].tolist()).astype(int)

    data = data["c2"].astype(int)
    print(data)





    share|improve this answer




























      0














      Dataframe workس with general datatypes, if you want to change your dataframe data type use



      pandas.DataFrame.astype(target type)


      track below code with and without astype method:



      import pandas as pd
      data = pd.DataFrame(data=[["red", "apple"], ["yellow", "orange"], ["blue", "banana"], ["green", "avocado"]],
      columns=["color", "fruitN"])
      # data = data.set_index("fruitN")
      file_1 = ["akee", "apricot", "avocado"]
      file_2 = ["avocado", "bilberry", "banana", "blackberry"]
      file_3 = ["blackberry", "coconut", "cranberry"]
      file_1_df = pd.DataFrame(data=file_1, columns=["type_1"])
      file_2_df = pd.DataFrame(data=file_2, columns=["type_2"])
      file_3_df = pd.DataFrame(data=file_3, columns=["type_3"])
      l = [file_1_df, file_2_df, file_3_df]
      for x, y in enumerate(l):
      data['c' + str(x + 1)] = data.fruitN.isin(y.iloc[:, 0].tolist()).astype(int)

      data = data["c2"].astype(int)
      print(data)





      share|improve this answer


























        0












        0








        0







        Dataframe workس with general datatypes, if you want to change your dataframe data type use



        pandas.DataFrame.astype(target type)


        track below code with and without astype method:



        import pandas as pd
        data = pd.DataFrame(data=[["red", "apple"], ["yellow", "orange"], ["blue", "banana"], ["green", "avocado"]],
        columns=["color", "fruitN"])
        # data = data.set_index("fruitN")
        file_1 = ["akee", "apricot", "avocado"]
        file_2 = ["avocado", "bilberry", "banana", "blackberry"]
        file_3 = ["blackberry", "coconut", "cranberry"]
        file_1_df = pd.DataFrame(data=file_1, columns=["type_1"])
        file_2_df = pd.DataFrame(data=file_2, columns=["type_2"])
        file_3_df = pd.DataFrame(data=file_3, columns=["type_3"])
        l = [file_1_df, file_2_df, file_3_df]
        for x, y in enumerate(l):
        data['c' + str(x + 1)] = data.fruitN.isin(y.iloc[:, 0].tolist()).astype(int)

        data = data["c2"].astype(int)
        print(data)





        share|improve this answer













        Dataframe workس with general datatypes, if you want to change your dataframe data type use



        pandas.DataFrame.astype(target type)


        track below code with and without astype method:



        import pandas as pd
        data = pd.DataFrame(data=[["red", "apple"], ["yellow", "orange"], ["blue", "banana"], ["green", "avocado"]],
        columns=["color", "fruitN"])
        # data = data.set_index("fruitN")
        file_1 = ["akee", "apricot", "avocado"]
        file_2 = ["avocado", "bilberry", "banana", "blackberry"]
        file_3 = ["blackberry", "coconut", "cranberry"]
        file_1_df = pd.DataFrame(data=file_1, columns=["type_1"])
        file_2_df = pd.DataFrame(data=file_2, columns=["type_2"])
        file_3_df = pd.DataFrame(data=file_3, columns=["type_3"])
        l = [file_1_df, file_2_df, file_3_df]
        for x, y in enumerate(l):
        data['c' + str(x + 1)] = data.fruitN.isin(y.iloc[:, 0].tolist()).astype(int)

        data = data["c2"].astype(int)
        print(data)






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 24 '18 at 0:04









        saeed heidarisaeed heidari

        1644




        1644
































            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53453798%2fwhy-is-dataframe-changing-the-datatype-of-all-input-into-objects%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Costa Masnaga

            Fotorealismo

            Sidney Franklin