How do I break down the math symbols in this equation
$begingroup$
$$frac{n}{phi(n)}=frac{n}{nprod_{p|n}left(1-frac{1}{p}right)}=frac{1}{prod_{p|n}left(1-frac{1}{p}right)}$$
How do I learn to understand these equations by myself as I can't seem to find the mathematical notation descriptions online?
notation
$endgroup$
add a comment |
$begingroup$
$$frac{n}{phi(n)}=frac{n}{nprod_{p|n}left(1-frac{1}{p}right)}=frac{1}{prod_{p|n}left(1-frac{1}{p}right)}$$
How do I learn to understand these equations by myself as I can't seem to find the mathematical notation descriptions online?
notation
$endgroup$
1
$begingroup$
The $phi(n)$ refers to Euler's totient function. As explained here, the $prod_{pmid n}$ refers to taking a product over all distinct primes $p$ that divide $n$.
$endgroup$
– Minus One-Twelfth
2 hours ago
$begingroup$
For symbols you don't know, you can get help from en.wikipedia.org/wiki/List_of_mathematical_symbols
$endgroup$
– Mark S.
2 hours ago
add a comment |
$begingroup$
$$frac{n}{phi(n)}=frac{n}{nprod_{p|n}left(1-frac{1}{p}right)}=frac{1}{prod_{p|n}left(1-frac{1}{p}right)}$$
How do I learn to understand these equations by myself as I can't seem to find the mathematical notation descriptions online?
notation
$endgroup$
$$frac{n}{phi(n)}=frac{n}{nprod_{p|n}left(1-frac{1}{p}right)}=frac{1}{prod_{p|n}left(1-frac{1}{p}right)}$$
How do I learn to understand these equations by myself as I can't seem to find the mathematical notation descriptions online?
notation
notation
edited 2 hours ago
Robert Howard
2,0381927
2,0381927
asked 2 hours ago
Po Chen LiuPo Chen Liu
1148
1148
1
$begingroup$
The $phi(n)$ refers to Euler's totient function. As explained here, the $prod_{pmid n}$ refers to taking a product over all distinct primes $p$ that divide $n$.
$endgroup$
– Minus One-Twelfth
2 hours ago
$begingroup$
For symbols you don't know, you can get help from en.wikipedia.org/wiki/List_of_mathematical_symbols
$endgroup$
– Mark S.
2 hours ago
add a comment |
1
$begingroup$
The $phi(n)$ refers to Euler's totient function. As explained here, the $prod_{pmid n}$ refers to taking a product over all distinct primes $p$ that divide $n$.
$endgroup$
– Minus One-Twelfth
2 hours ago
$begingroup$
For symbols you don't know, you can get help from en.wikipedia.org/wiki/List_of_mathematical_symbols
$endgroup$
– Mark S.
2 hours ago
1
1
$begingroup$
The $phi(n)$ refers to Euler's totient function. As explained here, the $prod_{pmid n}$ refers to taking a product over all distinct primes $p$ that divide $n$.
$endgroup$
– Minus One-Twelfth
2 hours ago
$begingroup$
The $phi(n)$ refers to Euler's totient function. As explained here, the $prod_{pmid n}$ refers to taking a product over all distinct primes $p$ that divide $n$.
$endgroup$
– Minus One-Twelfth
2 hours ago
$begingroup$
For symbols you don't know, you can get help from en.wikipedia.org/wiki/List_of_mathematical_symbols
$endgroup$
– Mark S.
2 hours ago
$begingroup$
For symbols you don't know, you can get help from en.wikipedia.org/wiki/List_of_mathematical_symbols
$endgroup$
– Mark S.
2 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The big pi, $prod$ denotes a product. The subscript on this tells you which numbers this product is over. In this example, the subscript says $p|n$ which means "$p$ divides $n$" i.e. the product is over all the prime numbers $p$ that divide $n$ (the prime factors of $n$). $phi(n)$ denotes the Euler-Totient function. This counts the number of integers $m<n$ which are co-prime to $n$, i.e. have $gcd(m,n)=1$.
As an example, say we have $n=105=3times5times7$. Then $$prod_{p|n}left(1-frac1pright)=left(1-frac13right)timesleft(1-frac15right)timesleft(1-frac17right)=frac{16}{35}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123277%2fhow-do-i-break-down-the-math-symbols-in-this-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The big pi, $prod$ denotes a product. The subscript on this tells you which numbers this product is over. In this example, the subscript says $p|n$ which means "$p$ divides $n$" i.e. the product is over all the prime numbers $p$ that divide $n$ (the prime factors of $n$). $phi(n)$ denotes the Euler-Totient function. This counts the number of integers $m<n$ which are co-prime to $n$, i.e. have $gcd(m,n)=1$.
As an example, say we have $n=105=3times5times7$. Then $$prod_{p|n}left(1-frac1pright)=left(1-frac13right)timesleft(1-frac15right)timesleft(1-frac17right)=frac{16}{35}$$
$endgroup$
add a comment |
$begingroup$
The big pi, $prod$ denotes a product. The subscript on this tells you which numbers this product is over. In this example, the subscript says $p|n$ which means "$p$ divides $n$" i.e. the product is over all the prime numbers $p$ that divide $n$ (the prime factors of $n$). $phi(n)$ denotes the Euler-Totient function. This counts the number of integers $m<n$ which are co-prime to $n$, i.e. have $gcd(m,n)=1$.
As an example, say we have $n=105=3times5times7$. Then $$prod_{p|n}left(1-frac1pright)=left(1-frac13right)timesleft(1-frac15right)timesleft(1-frac17right)=frac{16}{35}$$
$endgroup$
add a comment |
$begingroup$
The big pi, $prod$ denotes a product. The subscript on this tells you which numbers this product is over. In this example, the subscript says $p|n$ which means "$p$ divides $n$" i.e. the product is over all the prime numbers $p$ that divide $n$ (the prime factors of $n$). $phi(n)$ denotes the Euler-Totient function. This counts the number of integers $m<n$ which are co-prime to $n$, i.e. have $gcd(m,n)=1$.
As an example, say we have $n=105=3times5times7$. Then $$prod_{p|n}left(1-frac1pright)=left(1-frac13right)timesleft(1-frac15right)timesleft(1-frac17right)=frac{16}{35}$$
$endgroup$
The big pi, $prod$ denotes a product. The subscript on this tells you which numbers this product is over. In this example, the subscript says $p|n$ which means "$p$ divides $n$" i.e. the product is over all the prime numbers $p$ that divide $n$ (the prime factors of $n$). $phi(n)$ denotes the Euler-Totient function. This counts the number of integers $m<n$ which are co-prime to $n$, i.e. have $gcd(m,n)=1$.
As an example, say we have $n=105=3times5times7$. Then $$prod_{p|n}left(1-frac1pright)=left(1-frac13right)timesleft(1-frac15right)timesleft(1-frac17right)=frac{16}{35}$$
answered 2 hours ago
John DoeJohn Doe
11.2k11238
11.2k11238
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123277%2fhow-do-i-break-down-the-math-symbols-in-this-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The $phi(n)$ refers to Euler's totient function. As explained here, the $prod_{pmid n}$ refers to taking a product over all distinct primes $p$ that divide $n$.
$endgroup$
– Minus One-Twelfth
2 hours ago
$begingroup$
For symbols you don't know, you can get help from en.wikipedia.org/wiki/List_of_mathematical_symbols
$endgroup$
– Mark S.
2 hours ago