Integral in polar coordinate on a circle where the function is non holomorphic
$begingroup$
I need to evaluate on the circle $left|zright|=pi$ the integral
$$int_{left|zright|=pi}frac{left|zright|e^{-left|zright|}}{z}dz.$$
The function is not holomorphic there. Anyway, I tried to integrate it using polar coordinates and simplyfing the modulo and I got $2pi e^{-pi}$ while the result should be $2pi^2 ie^{-pi}$.
I'm sure is trivial and I overlooked a stupid error. Can anybody tell me where?
complex-analysis contour-integration
$endgroup$
add a comment |
$begingroup$
I need to evaluate on the circle $left|zright|=pi$ the integral
$$int_{left|zright|=pi}frac{left|zright|e^{-left|zright|}}{z}dz.$$
The function is not holomorphic there. Anyway, I tried to integrate it using polar coordinates and simplyfing the modulo and I got $2pi e^{-pi}$ while the result should be $2pi^2 ie^{-pi}$.
I'm sure is trivial and I overlooked a stupid error. Can anybody tell me where?
complex-analysis contour-integration
$endgroup$
$begingroup$
Possible mistake: forgotten $pi i$ in $dz$.
$endgroup$
– Martín-Blas Pérez Pinilla
5 hours ago
add a comment |
$begingroup$
I need to evaluate on the circle $left|zright|=pi$ the integral
$$int_{left|zright|=pi}frac{left|zright|e^{-left|zright|}}{z}dz.$$
The function is not holomorphic there. Anyway, I tried to integrate it using polar coordinates and simplyfing the modulo and I got $2pi e^{-pi}$ while the result should be $2pi^2 ie^{-pi}$.
I'm sure is trivial and I overlooked a stupid error. Can anybody tell me where?
complex-analysis contour-integration
$endgroup$
I need to evaluate on the circle $left|zright|=pi$ the integral
$$int_{left|zright|=pi}frac{left|zright|e^{-left|zright|}}{z}dz.$$
The function is not holomorphic there. Anyway, I tried to integrate it using polar coordinates and simplyfing the modulo and I got $2pi e^{-pi}$ while the result should be $2pi^2 ie^{-pi}$.
I'm sure is trivial and I overlooked a stupid error. Can anybody tell me where?
complex-analysis contour-integration
complex-analysis contour-integration
edited 5 hours ago
José Carlos Santos
171k23132240
171k23132240
asked 5 hours ago
Dac0Dac0
5,9861936
5,9861936
$begingroup$
Possible mistake: forgotten $pi i$ in $dz$.
$endgroup$
– Martín-Blas Pérez Pinilla
5 hours ago
add a comment |
$begingroup$
Possible mistake: forgotten $pi i$ in $dz$.
$endgroup$
– Martín-Blas Pérez Pinilla
5 hours ago
$begingroup$
Possible mistake: forgotten $pi i$ in $dz$.
$endgroup$
– Martín-Blas Pérez Pinilla
5 hours ago
$begingroup$
Possible mistake: forgotten $pi i$ in $dz$.
$endgroup$
– Martín-Blas Pérez Pinilla
5 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let be $z = pi e^{itheta}, thetain[0,2pi]$:
$$
int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
int_0^{2pi}frac{pi e^{-pi}}{pi e^{itheta}}pi i e^{itheta} = 2pi^2 i e^{-pi}.
$$
But... Cauchy formula can be used:
$$
int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
int_{|z|=pi}frac{pi e^{-pi}}{z}dz = 2pi^2 i e^{-pi}.
$$
$endgroup$
$begingroup$
thank you, was what I was looking for :)
$endgroup$
– Dac0
5 hours ago
add a comment |
$begingroup$
If $gamma(t)=pi e^{it}$ ($tin[0,2pi]$), thenbegin{align}int_{lvert zrvert=pi}frac{lvert zrvert e^{-lvert zrvert}}z,mathrm dz&=int_0^{2pi}frac{bigllvertgamma(t)bigrrvert e^{-lvertgamma(t)rvert}}{gamma(t)}gamma'(t),mathrm dt\&=int_0^{2pi}pi e^{-pi}i,mathrm dt\&=2pi^2ie^{-pi}.end{align}
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169258%2fintegral-in-polar-coordinate-on-a-circle-where-the-function-is-non-holomorphic%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let be $z = pi e^{itheta}, thetain[0,2pi]$:
$$
int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
int_0^{2pi}frac{pi e^{-pi}}{pi e^{itheta}}pi i e^{itheta} = 2pi^2 i e^{-pi}.
$$
But... Cauchy formula can be used:
$$
int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
int_{|z|=pi}frac{pi e^{-pi}}{z}dz = 2pi^2 i e^{-pi}.
$$
$endgroup$
$begingroup$
thank you, was what I was looking for :)
$endgroup$
– Dac0
5 hours ago
add a comment |
$begingroup$
Let be $z = pi e^{itheta}, thetain[0,2pi]$:
$$
int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
int_0^{2pi}frac{pi e^{-pi}}{pi e^{itheta}}pi i e^{itheta} = 2pi^2 i e^{-pi}.
$$
But... Cauchy formula can be used:
$$
int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
int_{|z|=pi}frac{pi e^{-pi}}{z}dz = 2pi^2 i e^{-pi}.
$$
$endgroup$
$begingroup$
thank you, was what I was looking for :)
$endgroup$
– Dac0
5 hours ago
add a comment |
$begingroup$
Let be $z = pi e^{itheta}, thetain[0,2pi]$:
$$
int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
int_0^{2pi}frac{pi e^{-pi}}{pi e^{itheta}}pi i e^{itheta} = 2pi^2 i e^{-pi}.
$$
But... Cauchy formula can be used:
$$
int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
int_{|z|=pi}frac{pi e^{-pi}}{z}dz = 2pi^2 i e^{-pi}.
$$
$endgroup$
Let be $z = pi e^{itheta}, thetain[0,2pi]$:
$$
int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
int_0^{2pi}frac{pi e^{-pi}}{pi e^{itheta}}pi i e^{itheta} = 2pi^2 i e^{-pi}.
$$
But... Cauchy formula can be used:
$$
int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
int_{|z|=pi}frac{pi e^{-pi}}{z}dz = 2pi^2 i e^{-pi}.
$$
edited 5 hours ago
answered 5 hours ago
Martín-Blas Pérez PinillaMartín-Blas Pérez Pinilla
35k42971
35k42971
$begingroup$
thank you, was what I was looking for :)
$endgroup$
– Dac0
5 hours ago
add a comment |
$begingroup$
thank you, was what I was looking for :)
$endgroup$
– Dac0
5 hours ago
$begingroup$
thank you, was what I was looking for :)
$endgroup$
– Dac0
5 hours ago
$begingroup$
thank you, was what I was looking for :)
$endgroup$
– Dac0
5 hours ago
add a comment |
$begingroup$
If $gamma(t)=pi e^{it}$ ($tin[0,2pi]$), thenbegin{align}int_{lvert zrvert=pi}frac{lvert zrvert e^{-lvert zrvert}}z,mathrm dz&=int_0^{2pi}frac{bigllvertgamma(t)bigrrvert e^{-lvertgamma(t)rvert}}{gamma(t)}gamma'(t),mathrm dt\&=int_0^{2pi}pi e^{-pi}i,mathrm dt\&=2pi^2ie^{-pi}.end{align}
$endgroup$
add a comment |
$begingroup$
If $gamma(t)=pi e^{it}$ ($tin[0,2pi]$), thenbegin{align}int_{lvert zrvert=pi}frac{lvert zrvert e^{-lvert zrvert}}z,mathrm dz&=int_0^{2pi}frac{bigllvertgamma(t)bigrrvert e^{-lvertgamma(t)rvert}}{gamma(t)}gamma'(t),mathrm dt\&=int_0^{2pi}pi e^{-pi}i,mathrm dt\&=2pi^2ie^{-pi}.end{align}
$endgroup$
add a comment |
$begingroup$
If $gamma(t)=pi e^{it}$ ($tin[0,2pi]$), thenbegin{align}int_{lvert zrvert=pi}frac{lvert zrvert e^{-lvert zrvert}}z,mathrm dz&=int_0^{2pi}frac{bigllvertgamma(t)bigrrvert e^{-lvertgamma(t)rvert}}{gamma(t)}gamma'(t),mathrm dt\&=int_0^{2pi}pi e^{-pi}i,mathrm dt\&=2pi^2ie^{-pi}.end{align}
$endgroup$
If $gamma(t)=pi e^{it}$ ($tin[0,2pi]$), thenbegin{align}int_{lvert zrvert=pi}frac{lvert zrvert e^{-lvert zrvert}}z,mathrm dz&=int_0^{2pi}frac{bigllvertgamma(t)bigrrvert e^{-lvertgamma(t)rvert}}{gamma(t)}gamma'(t),mathrm dt\&=int_0^{2pi}pi e^{-pi}i,mathrm dt\&=2pi^2ie^{-pi}.end{align}
edited 5 hours ago
answered 5 hours ago
José Carlos SantosJosé Carlos Santos
171k23132240
171k23132240
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169258%2fintegral-in-polar-coordinate-on-a-circle-where-the-function-is-non-holomorphic%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Possible mistake: forgotten $pi i$ in $dz$.
$endgroup$
– Martín-Blas Pérez Pinilla
5 hours ago