Integral in polar coordinate on a circle where the function is non holomorphic












2












$begingroup$


I need to evaluate on the circle $left|zright|=pi$ the integral
$$int_{left|zright|=pi}frac{left|zright|e^{-left|zright|}}{z}dz.$$
The function is not holomorphic there. Anyway, I tried to integrate it using polar coordinates and simplyfing the modulo and I got $2pi e^{-pi}$ while the result should be $2pi^2 ie^{-pi}$.
I'm sure is trivial and I overlooked a stupid error. Can anybody tell me where?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Possible mistake: forgotten $pi i$ in $dz$.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    5 hours ago
















2












$begingroup$


I need to evaluate on the circle $left|zright|=pi$ the integral
$$int_{left|zright|=pi}frac{left|zright|e^{-left|zright|}}{z}dz.$$
The function is not holomorphic there. Anyway, I tried to integrate it using polar coordinates and simplyfing the modulo and I got $2pi e^{-pi}$ while the result should be $2pi^2 ie^{-pi}$.
I'm sure is trivial and I overlooked a stupid error. Can anybody tell me where?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Possible mistake: forgotten $pi i$ in $dz$.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    5 hours ago














2












2








2





$begingroup$


I need to evaluate on the circle $left|zright|=pi$ the integral
$$int_{left|zright|=pi}frac{left|zright|e^{-left|zright|}}{z}dz.$$
The function is not holomorphic there. Anyway, I tried to integrate it using polar coordinates and simplyfing the modulo and I got $2pi e^{-pi}$ while the result should be $2pi^2 ie^{-pi}$.
I'm sure is trivial and I overlooked a stupid error. Can anybody tell me where?










share|cite|improve this question











$endgroup$




I need to evaluate on the circle $left|zright|=pi$ the integral
$$int_{left|zright|=pi}frac{left|zright|e^{-left|zright|}}{z}dz.$$
The function is not holomorphic there. Anyway, I tried to integrate it using polar coordinates and simplyfing the modulo and I got $2pi e^{-pi}$ while the result should be $2pi^2 ie^{-pi}$.
I'm sure is trivial and I overlooked a stupid error. Can anybody tell me where?







complex-analysis contour-integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 5 hours ago









José Carlos Santos

171k23132240




171k23132240










asked 5 hours ago









Dac0Dac0

5,9861936




5,9861936












  • $begingroup$
    Possible mistake: forgotten $pi i$ in $dz$.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    5 hours ago


















  • $begingroup$
    Possible mistake: forgotten $pi i$ in $dz$.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    5 hours ago
















$begingroup$
Possible mistake: forgotten $pi i$ in $dz$.
$endgroup$
– Martín-Blas Pérez Pinilla
5 hours ago




$begingroup$
Possible mistake: forgotten $pi i$ in $dz$.
$endgroup$
– Martín-Blas Pérez Pinilla
5 hours ago










2 Answers
2






active

oldest

votes


















4












$begingroup$

Let be $z = pi e^{itheta}, thetain[0,2pi]$:
$$
int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
int_0^{2pi}frac{pi e^{-pi}}{pi e^{itheta}}pi i e^{itheta} = 2pi^2 i e^{-pi}.
$$

But... Cauchy formula can be used:
$$
int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
int_{|z|=pi}frac{pi e^{-pi}}{z}dz = 2pi^2 i e^{-pi}.
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    thank you, was what I was looking for :)
    $endgroup$
    – Dac0
    5 hours ago



















5












$begingroup$

If $gamma(t)=pi e^{it}$ ($tin[0,2pi]$), thenbegin{align}int_{lvert zrvert=pi}frac{lvert zrvert e^{-lvert zrvert}}z,mathrm dz&=int_0^{2pi}frac{bigllvertgamma(t)bigrrvert e^{-lvertgamma(t)rvert}}{gamma(t)}gamma'(t),mathrm dt\&=int_0^{2pi}pi e^{-pi}i,mathrm dt\&=2pi^2ie^{-pi}.end{align}






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169258%2fintegral-in-polar-coordinate-on-a-circle-where-the-function-is-non-holomorphic%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Let be $z = pi e^{itheta}, thetain[0,2pi]$:
    $$
    int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
    int_0^{2pi}frac{pi e^{-pi}}{pi e^{itheta}}pi i e^{itheta} = 2pi^2 i e^{-pi}.
    $$

    But... Cauchy formula can be used:
    $$
    int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
    int_{|z|=pi}frac{pi e^{-pi}}{z}dz = 2pi^2 i e^{-pi}.
    $$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      thank you, was what I was looking for :)
      $endgroup$
      – Dac0
      5 hours ago
















    4












    $begingroup$

    Let be $z = pi e^{itheta}, thetain[0,2pi]$:
    $$
    int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
    int_0^{2pi}frac{pi e^{-pi}}{pi e^{itheta}}pi i e^{itheta} = 2pi^2 i e^{-pi}.
    $$

    But... Cauchy formula can be used:
    $$
    int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
    int_{|z|=pi}frac{pi e^{-pi}}{z}dz = 2pi^2 i e^{-pi}.
    $$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      thank you, was what I was looking for :)
      $endgroup$
      – Dac0
      5 hours ago














    4












    4








    4





    $begingroup$

    Let be $z = pi e^{itheta}, thetain[0,2pi]$:
    $$
    int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
    int_0^{2pi}frac{pi e^{-pi}}{pi e^{itheta}}pi i e^{itheta} = 2pi^2 i e^{-pi}.
    $$

    But... Cauchy formula can be used:
    $$
    int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
    int_{|z|=pi}frac{pi e^{-pi}}{z}dz = 2pi^2 i e^{-pi}.
    $$






    share|cite|improve this answer











    $endgroup$



    Let be $z = pi e^{itheta}, thetain[0,2pi]$:
    $$
    int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
    int_0^{2pi}frac{pi e^{-pi}}{pi e^{itheta}}pi i e^{itheta} = 2pi^2 i e^{-pi}.
    $$

    But... Cauchy formula can be used:
    $$
    int_{|z|=pi}frac{|z|e^{-|z|}}{z}dz =
    int_{|z|=pi}frac{pi e^{-pi}}{z}dz = 2pi^2 i e^{-pi}.
    $$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 5 hours ago

























    answered 5 hours ago









    Martín-Blas Pérez PinillaMartín-Blas Pérez Pinilla

    35k42971




    35k42971












    • $begingroup$
      thank you, was what I was looking for :)
      $endgroup$
      – Dac0
      5 hours ago


















    • $begingroup$
      thank you, was what I was looking for :)
      $endgroup$
      – Dac0
      5 hours ago
















    $begingroup$
    thank you, was what I was looking for :)
    $endgroup$
    – Dac0
    5 hours ago




    $begingroup$
    thank you, was what I was looking for :)
    $endgroup$
    – Dac0
    5 hours ago











    5












    $begingroup$

    If $gamma(t)=pi e^{it}$ ($tin[0,2pi]$), thenbegin{align}int_{lvert zrvert=pi}frac{lvert zrvert e^{-lvert zrvert}}z,mathrm dz&=int_0^{2pi}frac{bigllvertgamma(t)bigrrvert e^{-lvertgamma(t)rvert}}{gamma(t)}gamma'(t),mathrm dt\&=int_0^{2pi}pi e^{-pi}i,mathrm dt\&=2pi^2ie^{-pi}.end{align}






    share|cite|improve this answer











    $endgroup$


















      5












      $begingroup$

      If $gamma(t)=pi e^{it}$ ($tin[0,2pi]$), thenbegin{align}int_{lvert zrvert=pi}frac{lvert zrvert e^{-lvert zrvert}}z,mathrm dz&=int_0^{2pi}frac{bigllvertgamma(t)bigrrvert e^{-lvertgamma(t)rvert}}{gamma(t)}gamma'(t),mathrm dt\&=int_0^{2pi}pi e^{-pi}i,mathrm dt\&=2pi^2ie^{-pi}.end{align}






      share|cite|improve this answer











      $endgroup$
















        5












        5








        5





        $begingroup$

        If $gamma(t)=pi e^{it}$ ($tin[0,2pi]$), thenbegin{align}int_{lvert zrvert=pi}frac{lvert zrvert e^{-lvert zrvert}}z,mathrm dz&=int_0^{2pi}frac{bigllvertgamma(t)bigrrvert e^{-lvertgamma(t)rvert}}{gamma(t)}gamma'(t),mathrm dt\&=int_0^{2pi}pi e^{-pi}i,mathrm dt\&=2pi^2ie^{-pi}.end{align}






        share|cite|improve this answer











        $endgroup$



        If $gamma(t)=pi e^{it}$ ($tin[0,2pi]$), thenbegin{align}int_{lvert zrvert=pi}frac{lvert zrvert e^{-lvert zrvert}}z,mathrm dz&=int_0^{2pi}frac{bigllvertgamma(t)bigrrvert e^{-lvertgamma(t)rvert}}{gamma(t)}gamma'(t),mathrm dt\&=int_0^{2pi}pi e^{-pi}i,mathrm dt\&=2pi^2ie^{-pi}.end{align}







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 5 hours ago

























        answered 5 hours ago









        José Carlos SantosJosé Carlos Santos

        171k23132240




        171k23132240






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169258%2fintegral-in-polar-coordinate-on-a-circle-where-the-function-is-non-holomorphic%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Costa Masnaga

            Fotorealismo

            Sidney Franklin